cmenasse commited on
Commit
6551b5c
1 Parent(s): 15ed1cd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.78 +/- 0.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e77d73d373fcb46f55b5f49f0c5a343835445dc848854ed118a2325608ead01
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1a89b16a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1a89b0eea0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674143052734692873,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAM4qmPt1lIry0FgE/M4qmPt1lIry0FgE/M4qmPt1lIry0FgE/M4qmPt1lIry0FgE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiEmkP+jstT+M1s8/DTyMvkoY1D94ta+/XKzhPgRevT9EZNi/6X2mPt9Ztr8NyVk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAziqY+3WUivLQWAT+kVB+8VdmHOndwa7wziqY+3WUivLQWAT+kVB+8VdmHOndwa7wziqY+3WUivLQWAT+kVB+8VdmHOndwa7wziqY+3WUivLQWAT+kVB+8VdmHOndwa7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.32527313 -0.00991198 0.5042527 ]\n [ 0.32527313 -0.00991198 0.5042527 ]\n [ 0.32527313 -0.00991198 0.5042527 ]\n [ 0.32527313 -0.00991198 0.5042527 ]]",
60
+ "desired_goal": "[[ 1.283494 1.4212923 1.623735 ]\n [-0.27389565 1.6569912 -1.3727255 ]\n [ 0.44076812 1.4794316 -1.6905599 ]\n [ 0.32517937 -1.4246176 0.85072404]]",
61
+ "observation": "[[ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]\n [ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]\n [ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]\n [ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8+PJu/NnE74UhYo+z8T2unw35T1opoU+NEIIPrcNjz141xE+3jqQvdfDkr3JnZg8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.00616121 -0.14395122 0.27054656]\n [-0.0018827 0.11192223 0.2610352 ]\n [ 0.13306504 0.06985038 0.14242351]\n [-0.07042478 -0.0716626 0.01862993]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoOBiRQ2m+r+UhpRSlIwBbJRLMowBdJRHQKOjtyd4FA51fZQoaAZoCWgPQwjeIFor2tz6v5SGlFKUaBVLMmgWR0Cjo3fhl18tdX2UKGgGaAloD0MI+BxYjpDhA8CUhpRSlGgVSzJoFkdAo6M4nWrfcnV9lChoBmgJaA9DCOOncW9+g/u/lIaUUpRoFUsyaBZHQKOi/Ho5ggJ1fZQoaAZoCWgPQwixprIo7CIAwJSGlFKUaBVLMmgWR0CjpJBiCrcTdX2UKGgGaAloD0MIX+6TowBR97+UhpRSlGgVSzJoFkdAo6RRE2HclHV9lChoBmgJaA9DCFJ+Uu3TMfa/lIaUUpRoFUsyaBZHQKOkEZP2wmp1fZQoaAZoCWgPQwiADYgQVy4AwJSGlFKUaBVLMmgWR0Cjo9VxS5y3dX2UKGgGaAloD0MISOAPP/99+7+UhpRSlGgVSzJoFkdAo6VxdB0IT3V9lChoBmgJaA9DCKxVuyak9fq/lIaUUpRoFUsyaBZHQKOlMiTMaCN1fZQoaAZoCWgPQwh9QQsJGP0CwJSGlFKUaBVLMmgWR0CjpPKmsNlRdX2UKGgGaAloD0MIRiI0go3rB8CUhpRSlGgVSzJoFkdAo6S2jEehf3V9lChoBmgJaA9DCM4Y5gRtcv6/lIaUUpRoFUsyaBZHQKOmULXL/0d1fZQoaAZoCWgPQwhseeV624z9v5SGlFKUaBVLMmgWR0CjphFqJuVHdX2UKGgGaAloD0MIUKinj8BfAMCUhpRSlGgVSzJoFkdAo6XSIxgy/XV9lChoBmgJaA9DCN8ZbVUS2fK/lIaUUpRoFUsyaBZHQKOlleokzGh1fZQoaAZoCWgPQwiTN8DMd5AAwJSGlFKUaBVLMmgWR0Cjp0J6po9LdX2UKGgGaAloD0MIYcH9gAeG/r+UhpRSlGgVSzJoFkdAo6cDMRpUP3V9lChoBmgJaA9DCC7kEdxImfW/lIaUUpRoFUsyaBZHQKOmw+xnnMd1fZQoaAZoCWgPQwgPJzCd1u37v5SGlFKUaBVLMmgWR0CjpoezD4xldX2UKGgGaAloD0MI5bhTOlgfAMCUhpRSlGgVSzJoFkdAo6gkjkdWAHV9lChoBmgJaA9DCG9lic4yS/i/lIaUUpRoFUsyaBZHQKOn5afSQYF1fZQoaAZoCWgPQwjzBS0kYHT5v5SGlFKUaBVLMmgWR0Cjp6ZmAbyZdX2UKGgGaAloD0MIyHn/HycM/b+UhpRSlGgVSzJoFkdAo6dqV+qioXV9lChoBmgJaA9DCMMPzqeOFfy/lIaUUpRoFUsyaBZHQKOpBpoK2KF1fZQoaAZoCWgPQwgdWI6QgRwDwJSGlFKUaBVLMmgWR0CjqMeirT6SdX2UKGgGaAloD0MIcodNZObC9b+UhpRSlGgVSzJoFkdAo6iIRqXWv3V9lChoBmgJaA9DCJW6ZBwjmfy/lIaUUpRoFUsyaBZHQKOoTAzpHI91fZQoaAZoCWgPQwhR+GwdHOz5v5SGlFKUaBVLMmgWR0CjqeWtlqagdX2UKGgGaAloD0MIPIcyVMXU/L+UhpRSlGgVSzJoFkdAo6mmbXpW3nV9lChoBmgJaA9DCGe1wB4Tqfm/lIaUUpRoFUsyaBZHQKOpZ0Lc9GJ1fZQoaAZoCWgPQwioxeBh2nf/v5SGlFKUaBVLMmgWR0CjqStZmqYJdX2UKGgGaAloD0MItksbDkuD+r+UhpRSlGgVSzJoFkdAo6rH1rZam3V9lChoBmgJaA9DCKEPlrGhG/O/lIaUUpRoFUsyaBZHQKOqiJswco91fZQoaAZoCWgPQwg0hGOWPQn6v5SGlFKUaBVLMmgWR0Cjqkk/8l5XdX2UKGgGaAloD0MIlX8tr1yv9r+UhpRSlGgVSzJoFkdAo6oNFjNILHV9lChoBmgJaA9DCCFX6lkQiva/lIaUUpRoFUsyaBZHQKOryqS5iEx1fZQoaAZoCWgPQwjtYprpXmf5v5SGlFKUaBVLMmgWR0Cjq4wDNhVmdX2UKGgGaAloD0MIdlH0wMdg97+UhpRSlGgVSzJoFkdAo6tMvkBCD3V9lChoBmgJaA9DCK+196kqdPy/lIaUUpRoFUsyaBZHQKOrEJTl1bJ1fZQoaAZoCWgPQwh4swbvq3L8v5SGlFKUaBVLMmgWR0CjrLCdJ8OTdX2UKGgGaAloD0MI3sfRHFl5+7+UhpRSlGgVSzJoFkdAo6xxgy/KyXV9lChoBmgJaA9DCKEQAYdQJfy/lIaUUpRoFUsyaBZHQKOsMhN/OMV1fZQoaAZoCWgPQwiLUkKwqp72v5SGlFKUaBVLMmgWR0Cjq/XfqHGkdX2UKGgGaAloD0MIyThGskfo/L+UhpRSlGgVSzJoFkdAo62tgv114nV9lChoBmgJaA9DCCwP0lPkEPi/lIaUUpRoFUsyaBZHQKOtbkU9IPN1fZQoaAZoCWgPQwj4MlGE1G3wv5SGlFKUaBVLMmgWR0CjrS+h4+r3dX2UKGgGaAloD0MIxy5RvTUwA8CUhpRSlGgVSzJoFkdAo6zzpLVWj3V9lChoBmgJaA9DCPAXsyWrAgDAlIaUUpRoFUsyaBZHQKOuogGr0at1fZQoaAZoCWgPQwhgPlkxXJ39v5SGlFKUaBVLMmgWR0CjrmMBIWgwdX2UKGgGaAloD0MIq+y7Ivhf8r+UhpRSlGgVSzJoFkdAo64kIcBEKHV9lChoBmgJaA9DCDmAft+/GQPAlIaUUpRoFUsyaBZHQKOt6BjFyaN1fZQoaAZoCWgPQwhI3jmUoerzv5SGlFKUaBVLMmgWR0Cjr4j0lJHzdX2UKGgGaAloD0MIdqimJOtwAMCUhpRSlGgVSzJoFkdAo69JvcafjHV9lChoBmgJaA9DCAZLdQEvM/u/lIaUUpRoFUsyaBZHQKOvCmplz2h1fZQoaAZoCWgPQwjEzhQ6r3H2v5SGlFKUaBVLMmgWR0Cjrs513dKvdX2UKGgGaAloD0MISpUoe0u59L+UhpRSlGgVSzJoFkdAo7BpFd9lVnV9lChoBmgJaA9DCNS3zOmy2Pu/lIaUUpRoFUsyaBZHQKOwKcurZJ11fZQoaAZoCWgPQwjVzjC1pY71v5SGlFKUaBVLMmgWR0Cjr+qEFnqWdX2UKGgGaAloD0MICDwwgPBh9b+UhpRSlGgVSzJoFkdAo6+uZkTYd3V9lChoBmgJaA9DCMNJmj+mdfy/lIaUUpRoFUsyaBZHQKOxWgfU4Jh1fZQoaAZoCWgPQwjQfTmzXSH/v5SGlFKUaBVLMmgWR0CjsRstTUAldX2UKGgGaAloD0MIjQqcbAO3AcCUhpRSlGgVSzJoFkdAo7Dbx3FDOXV9lChoBmgJaA9DCGBXk6esZvO/lIaUUpRoFUsyaBZHQKOwn6l+Eyt1fZQoaAZoCWgPQwg4MSQnE/f1v5SGlFKUaBVLMmgWR0CjsjTyjHn2dX2UKGgGaAloD0MIg9vawvNS8r+UhpRSlGgVSzJoFkdAo7H1nTRYzXV9lChoBmgJaA9DCFluaTUkrvK/lIaUUpRoFUsyaBZHQKOxtjawljV1fZQoaAZoCWgPQwjtKw/SUyT4v5SGlFKUaBVLMmgWR0CjsXosqaw2dX2UKGgGaAloD0MICanb2Vc+BsCUhpRSlGgVSzJoFkdAo7Mp2KVIJHV9lChoBmgJaA9DCKH3xhAA3Pu/lIaUUpRoFUsyaBZHQKOy6qH446x1fZQoaAZoCWgPQwhuT5DY7p70v5SGlFKUaBVLMmgWR0Cjsqu801qGdX2UKGgGaAloD0MI3H9kOnQ6+b+UhpRSlGgVSzJoFkdAo7Jv1e0G/3V9lChoBmgJaA9DCAH4p1SJcvW/lIaUUpRoFUsyaBZHQKO0BTS9du51fZQoaAZoCWgPQwgKaCJseDr5v5SGlFKUaBVLMmgWR0Cjs8YcWCVbdX2UKGgGaAloD0MILV+X4T+d9L+UhpRSlGgVSzJoFkdAo7OGqioKlnV9lChoBmgJaA9DCPGdmPVi6Pu/lIaUUpRoFUsyaBZHQKOzSrjHXEt1fZQoaAZoCWgPQwhCeR9Hc+T6v5SGlFKUaBVLMmgWR0CjtOvFefI0dX2UKGgGaAloD0MIUP7uHTUm/7+UhpRSlGgVSzJoFkdAo7SsfzSThnV9lChoBmgJaA9DCCQLmMCtGwDAlIaUUpRoFUsyaBZHQKO0bQpF1CB1fZQoaAZoCWgPQwjKwtfXupT6v5SGlFKUaBVLMmgWR0CjtDEa2nbZdX2UKGgGaAloD0MI9BjlmZfD+r+UhpRSlGgVSzJoFkdAo7XO+49X93V9lChoBmgJaA9DCIqQup195fm/lIaUUpRoFUsyaBZHQKO1j7ALy+Z1fZQoaAZoCWgPQwgiADj27Hn5v5SGlFKUaBVLMmgWR0CjtVCKziS8dX2UKGgGaAloD0MIKNL9nIL8+b+UhpRSlGgVSzJoFkdAo7UUYKpkw3V9lChoBmgJaA9DCCvAd5s3zvu/lIaUUpRoFUsyaBZHQKO2znmq5sl1fZQoaAZoCWgPQwhKXTKOkez0v5SGlFKUaBVLMmgWR0Cjto+3x4IKdX2UKGgGaAloD0MIfgG9cOcC9r+UhpRSlGgVSzJoFkdAo7ZQlSjxkXV9lChoBmgJaA9DCBAIdCZtavO/lIaUUpRoFUsyaBZHQKO2FOTq0MR1fZQoaAZoCWgPQwjeO2pMiHn5v5SGlFKUaBVLMmgWR0Cjt7XfIjnndX2UKGgGaAloD0MITfVk/tG387+UhpRSlGgVSzJoFkdAo7d274BV/HV9lChoBmgJaA9DCJzEILByqALAlIaUUpRoFUsyaBZHQKO3N8rqdH51fZQoaAZoCWgPQwiAYmTJHMv5v5SGlFKUaBVLMmgWR0CjtvuxrzoVdX2UKGgGaAloD0MIpgpGJXWC/b+UhpRSlGgVSzJoFkdAo7ioBYFJQXV9lChoBmgJaA9DCBdGelG7X/i/lIaUUpRoFUsyaBZHQKO4aQFs54p1fZQoaAZoCWgPQwg18KMa9lsBwJSGlFKUaBVLMmgWR0CjuCmUnogWdX2UKGgGaAloD0MI83aE04IXAcCUhpRSlGgVSzJoFkdAo7fteQdS23V9lChoBmgJaA9DCKp8z0iEBvu/lIaUUpRoFUsyaBZHQKO5kMI/qxF1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CjuVGh/RVqdX2UKGgGaAloD0MIZryt9NpMAcCUhpRSlGgVSzJoFkdAo7kSNsFdLXV9lChoBmgJaA9DCLDmAMEcvf+/lIaUUpRoFUsyaBZHQKO41hMJyAB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d6b4b8771ccf8ab182027721c348dda688a5fdc8aeb27e4d152e4c659341ac
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7d0407f6e421f28d2e5286563ec640be20a139dd007ce3ca10f79f03b758b80
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1a89b16a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a89b0eea0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674143052734692873, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAM4qmPt1lIry0FgE/M4qmPt1lIry0FgE/M4qmPt1lIry0FgE/M4qmPt1lIry0FgE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiEmkP+jstT+M1s8/DTyMvkoY1D94ta+/XKzhPgRevT9EZNi/6X2mPt9Ztr8NyVk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAziqY+3WUivLQWAT+kVB+8VdmHOndwa7wziqY+3WUivLQWAT+kVB+8VdmHOndwa7wziqY+3WUivLQWAT+kVB+8VdmHOndwa7wziqY+3WUivLQWAT+kVB+8VdmHOndwa7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.32527313 -0.00991198 0.5042527 ]\n [ 0.32527313 -0.00991198 0.5042527 ]\n [ 0.32527313 -0.00991198 0.5042527 ]\n [ 0.32527313 -0.00991198 0.5042527 ]]", "desired_goal": "[[ 1.283494 1.4212923 1.623735 ]\n [-0.27389565 1.6569912 -1.3727255 ]\n [ 0.44076812 1.4794316 -1.6905599 ]\n [ 0.32517937 -1.4246176 0.85072404]]", "observation": "[[ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]\n [ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]\n [ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]\n [ 0.32527313 -0.00991198 0.5042527 -0.00972477 0.00103645 -0.01437008]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8+PJu/NnE74UhYo+z8T2unw35T1opoU+NEIIPrcNjz141xE+3jqQvdfDkr3JnZg8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00616121 -0.14395122 0.27054656]\n [-0.0018827 0.11192223 0.2610352 ]\n [ 0.13306504 0.06985038 0.14242351]\n [-0.07042478 -0.0716626 0.01862993]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoOBiRQ2m+r+UhpRSlIwBbJRLMowBdJRHQKOjtyd4FA51fZQoaAZoCWgPQwjeIFor2tz6v5SGlFKUaBVLMmgWR0Cjo3fhl18tdX2UKGgGaAloD0MI+BxYjpDhA8CUhpRSlGgVSzJoFkdAo6M4nWrfcnV9lChoBmgJaA9DCOOncW9+g/u/lIaUUpRoFUsyaBZHQKOi/Ho5ggJ1fZQoaAZoCWgPQwixprIo7CIAwJSGlFKUaBVLMmgWR0CjpJBiCrcTdX2UKGgGaAloD0MIX+6TowBR97+UhpRSlGgVSzJoFkdAo6RRE2HclHV9lChoBmgJaA9DCFJ+Uu3TMfa/lIaUUpRoFUsyaBZHQKOkEZP2wmp1fZQoaAZoCWgPQwiADYgQVy4AwJSGlFKUaBVLMmgWR0Cjo9VxS5y3dX2UKGgGaAloD0MISOAPP/99+7+UhpRSlGgVSzJoFkdAo6VxdB0IT3V9lChoBmgJaA9DCKxVuyak9fq/lIaUUpRoFUsyaBZHQKOlMiTMaCN1fZQoaAZoCWgPQwh9QQsJGP0CwJSGlFKUaBVLMmgWR0CjpPKmsNlRdX2UKGgGaAloD0MIRiI0go3rB8CUhpRSlGgVSzJoFkdAo6S2jEehf3V9lChoBmgJaA9DCM4Y5gRtcv6/lIaUUpRoFUsyaBZHQKOmULXL/0d1fZQoaAZoCWgPQwhseeV624z9v5SGlFKUaBVLMmgWR0CjphFqJuVHdX2UKGgGaAloD0MIUKinj8BfAMCUhpRSlGgVSzJoFkdAo6XSIxgy/XV9lChoBmgJaA9DCN8ZbVUS2fK/lIaUUpRoFUsyaBZHQKOlleokzGh1fZQoaAZoCWgPQwiTN8DMd5AAwJSGlFKUaBVLMmgWR0Cjp0J6po9LdX2UKGgGaAloD0MIYcH9gAeG/r+UhpRSlGgVSzJoFkdAo6cDMRpUP3V9lChoBmgJaA9DCC7kEdxImfW/lIaUUpRoFUsyaBZHQKOmw+xnnMd1fZQoaAZoCWgPQwgPJzCd1u37v5SGlFKUaBVLMmgWR0CjpoezD4xldX2UKGgGaAloD0MI5bhTOlgfAMCUhpRSlGgVSzJoFkdAo6gkjkdWAHV9lChoBmgJaA9DCG9lic4yS/i/lIaUUpRoFUsyaBZHQKOn5afSQYF1fZQoaAZoCWgPQwjzBS0kYHT5v5SGlFKUaBVLMmgWR0Cjp6ZmAbyZdX2UKGgGaAloD0MIyHn/HycM/b+UhpRSlGgVSzJoFkdAo6dqV+qioXV9lChoBmgJaA9DCMMPzqeOFfy/lIaUUpRoFUsyaBZHQKOpBpoK2KF1fZQoaAZoCWgPQwgdWI6QgRwDwJSGlFKUaBVLMmgWR0CjqMeirT6SdX2UKGgGaAloD0MIcodNZObC9b+UhpRSlGgVSzJoFkdAo6iIRqXWv3V9lChoBmgJaA9DCJW6ZBwjmfy/lIaUUpRoFUsyaBZHQKOoTAzpHI91fZQoaAZoCWgPQwhR+GwdHOz5v5SGlFKUaBVLMmgWR0CjqeWtlqagdX2UKGgGaAloD0MIPIcyVMXU/L+UhpRSlGgVSzJoFkdAo6mmbXpW3nV9lChoBmgJaA9DCGe1wB4Tqfm/lIaUUpRoFUsyaBZHQKOpZ0Lc9GJ1fZQoaAZoCWgPQwioxeBh2nf/v5SGlFKUaBVLMmgWR0CjqStZmqYJdX2UKGgGaAloD0MItksbDkuD+r+UhpRSlGgVSzJoFkdAo6rH1rZam3V9lChoBmgJaA9DCKEPlrGhG/O/lIaUUpRoFUsyaBZHQKOqiJswco91fZQoaAZoCWgPQwg0hGOWPQn6v5SGlFKUaBVLMmgWR0Cjqkk/8l5XdX2UKGgGaAloD0MIlX8tr1yv9r+UhpRSlGgVSzJoFkdAo6oNFjNILHV9lChoBmgJaA9DCCFX6lkQiva/lIaUUpRoFUsyaBZHQKOryqS5iEx1fZQoaAZoCWgPQwjtYprpXmf5v5SGlFKUaBVLMmgWR0Cjq4wDNhVmdX2UKGgGaAloD0MIdlH0wMdg97+UhpRSlGgVSzJoFkdAo6tMvkBCD3V9lChoBmgJaA9DCK+196kqdPy/lIaUUpRoFUsyaBZHQKOrEJTl1bJ1fZQoaAZoCWgPQwh4swbvq3L8v5SGlFKUaBVLMmgWR0CjrLCdJ8OTdX2UKGgGaAloD0MI3sfRHFl5+7+UhpRSlGgVSzJoFkdAo6xxgy/KyXV9lChoBmgJaA9DCKEQAYdQJfy/lIaUUpRoFUsyaBZHQKOsMhN/OMV1fZQoaAZoCWgPQwiLUkKwqp72v5SGlFKUaBVLMmgWR0Cjq/XfqHGkdX2UKGgGaAloD0MIyThGskfo/L+UhpRSlGgVSzJoFkdAo62tgv114nV9lChoBmgJaA9DCCwP0lPkEPi/lIaUUpRoFUsyaBZHQKOtbkU9IPN1fZQoaAZoCWgPQwj4MlGE1G3wv5SGlFKUaBVLMmgWR0CjrS+h4+r3dX2UKGgGaAloD0MIxy5RvTUwA8CUhpRSlGgVSzJoFkdAo6zzpLVWj3V9lChoBmgJaA9DCPAXsyWrAgDAlIaUUpRoFUsyaBZHQKOuogGr0at1fZQoaAZoCWgPQwhgPlkxXJ39v5SGlFKUaBVLMmgWR0CjrmMBIWgwdX2UKGgGaAloD0MIq+y7Ivhf8r+UhpRSlGgVSzJoFkdAo64kIcBEKHV9lChoBmgJaA9DCDmAft+/GQPAlIaUUpRoFUsyaBZHQKOt6BjFyaN1fZQoaAZoCWgPQwhI3jmUoerzv5SGlFKUaBVLMmgWR0Cjr4j0lJHzdX2UKGgGaAloD0MIdqimJOtwAMCUhpRSlGgVSzJoFkdAo69JvcafjHV9lChoBmgJaA9DCAZLdQEvM/u/lIaUUpRoFUsyaBZHQKOvCmplz2h1fZQoaAZoCWgPQwjEzhQ6r3H2v5SGlFKUaBVLMmgWR0Cjrs513dKvdX2UKGgGaAloD0MISpUoe0u59L+UhpRSlGgVSzJoFkdAo7BpFd9lVnV9lChoBmgJaA9DCNS3zOmy2Pu/lIaUUpRoFUsyaBZHQKOwKcurZJ11fZQoaAZoCWgPQwjVzjC1pY71v5SGlFKUaBVLMmgWR0Cjr+qEFnqWdX2UKGgGaAloD0MICDwwgPBh9b+UhpRSlGgVSzJoFkdAo6+uZkTYd3V9lChoBmgJaA9DCMNJmj+mdfy/lIaUUpRoFUsyaBZHQKOxWgfU4Jh1fZQoaAZoCWgPQwjQfTmzXSH/v5SGlFKUaBVLMmgWR0CjsRstTUAldX2UKGgGaAloD0MIjQqcbAO3AcCUhpRSlGgVSzJoFkdAo7Dbx3FDOXV9lChoBmgJaA9DCGBXk6esZvO/lIaUUpRoFUsyaBZHQKOwn6l+Eyt1fZQoaAZoCWgPQwg4MSQnE/f1v5SGlFKUaBVLMmgWR0CjsjTyjHn2dX2UKGgGaAloD0MIg9vawvNS8r+UhpRSlGgVSzJoFkdAo7H1nTRYzXV9lChoBmgJaA9DCFluaTUkrvK/lIaUUpRoFUsyaBZHQKOxtjawljV1fZQoaAZoCWgPQwjtKw/SUyT4v5SGlFKUaBVLMmgWR0CjsXosqaw2dX2UKGgGaAloD0MICanb2Vc+BsCUhpRSlGgVSzJoFkdAo7Mp2KVIJHV9lChoBmgJaA9DCKH3xhAA3Pu/lIaUUpRoFUsyaBZHQKOy6qH446x1fZQoaAZoCWgPQwhuT5DY7p70v5SGlFKUaBVLMmgWR0Cjsqu801qGdX2UKGgGaAloD0MI3H9kOnQ6+b+UhpRSlGgVSzJoFkdAo7Jv1e0G/3V9lChoBmgJaA9DCAH4p1SJcvW/lIaUUpRoFUsyaBZHQKO0BTS9du51fZQoaAZoCWgPQwgKaCJseDr5v5SGlFKUaBVLMmgWR0Cjs8YcWCVbdX2UKGgGaAloD0MILV+X4T+d9L+UhpRSlGgVSzJoFkdAo7OGqioKlnV9lChoBmgJaA9DCPGdmPVi6Pu/lIaUUpRoFUsyaBZHQKOzSrjHXEt1fZQoaAZoCWgPQwhCeR9Hc+T6v5SGlFKUaBVLMmgWR0CjtOvFefI0dX2UKGgGaAloD0MIUP7uHTUm/7+UhpRSlGgVSzJoFkdAo7SsfzSThnV9lChoBmgJaA9DCCQLmMCtGwDAlIaUUpRoFUsyaBZHQKO0bQpF1CB1fZQoaAZoCWgPQwjKwtfXupT6v5SGlFKUaBVLMmgWR0CjtDEa2nbZdX2UKGgGaAloD0MI9BjlmZfD+r+UhpRSlGgVSzJoFkdAo7XO+49X93V9lChoBmgJaA9DCIqQup195fm/lIaUUpRoFUsyaBZHQKO1j7ALy+Z1fZQoaAZoCWgPQwgiADj27Hn5v5SGlFKUaBVLMmgWR0CjtVCKziS8dX2UKGgGaAloD0MIKNL9nIL8+b+UhpRSlGgVSzJoFkdAo7UUYKpkw3V9lChoBmgJaA9DCCvAd5s3zvu/lIaUUpRoFUsyaBZHQKO2znmq5sl1fZQoaAZoCWgPQwhKXTKOkez0v5SGlFKUaBVLMmgWR0Cjto+3x4IKdX2UKGgGaAloD0MIfgG9cOcC9r+UhpRSlGgVSzJoFkdAo7ZQlSjxkXV9lChoBmgJaA9DCBAIdCZtavO/lIaUUpRoFUsyaBZHQKO2FOTq0MR1fZQoaAZoCWgPQwjeO2pMiHn5v5SGlFKUaBVLMmgWR0Cjt7XfIjnndX2UKGgGaAloD0MITfVk/tG387+UhpRSlGgVSzJoFkdAo7d274BV/HV9lChoBmgJaA9DCJzEILByqALAlIaUUpRoFUsyaBZHQKO3N8rqdH51fZQoaAZoCWgPQwiAYmTJHMv5v5SGlFKUaBVLMmgWR0CjtvuxrzoVdX2UKGgGaAloD0MIpgpGJXWC/b+UhpRSlGgVSzJoFkdAo7ioBYFJQXV9lChoBmgJaA9DCBdGelG7X/i/lIaUUpRoFUsyaBZHQKO4aQFs54p1fZQoaAZoCWgPQwg18KMa9lsBwJSGlFKUaBVLMmgWR0CjuCmUnogWdX2UKGgGaAloD0MI83aE04IXAcCUhpRSlGgVSzJoFkdAo7fteQdS23V9lChoBmgJaA9DCKp8z0iEBvu/lIaUUpRoFUsyaBZHQKO5kMI/qxF1fZQoaAZoCWgPQwgxCoLHt7f8v5SGlFKUaBVLMmgWR0CjuVGh/RVqdX2UKGgGaAloD0MIZryt9NpMAcCUhpRSlGgVSzJoFkdAo7kSNsFdLXV9lChoBmgJaA9DCLDmAMEcvf+/lIaUUpRoFUsyaBZHQKO41hMJyAB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (765 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.779104885365814, "std_reward": 0.4639295754979614, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T16:33:38.017567"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e78e50e48a149db0081439180c4d2cbe4fe880a3f48ce68b635c3f3039abf28
3
+ size 3212