Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.85 +/- 0.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2874faa2f512a477bd1f5f3731ae5d9b3c4ae8cdeab278208bc83c966c856f8e
|
3 |
+
size 108063
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fec79922dd0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fec79928900>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1684894371266279504,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhWPaPpwwZDs8Ag8/hWPaPpwwZDs8Ag8/hWPaPpwwZDs8Ag8/hWPaPpwwZDs8Ag8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVL3vvrJbqz9gyao/F4oMPhIje7/+s6c/YWm7P9EkKr4fahA/Zmd6v2sKRb/OtoE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.42654052 0.0034819 0.55862784]\n [0.42654052 0.0034819 0.55862784]\n [0.42654052 0.0034819 0.55862784]\n [0.42654052 0.0034819 0.55862784]]",
|
38 |
+
"desired_goal": "[[-0.46824133 1.3387358 1.3342705 ]\n [ 0.13724552 -0.9810039 1.3101804 ]\n [ 1.4641534 -0.16615607 0.5641193 ]\n [-0.97814023 -0.7696902 1.0133913 ]]",
|
39 |
+
"observation": "[[ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]\n [ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]\n [ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]\n [ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhDkCvYXLBr7EfO08IXUNPv0aYr150zY9rfunPZUx5z17bZg+647gPYd6UjzHzko+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.03179313 -0.13163574 0.02899016]\n [ 0.13814212 -0.05520152 0.04463527]\n [ 0.082023 0.11288754 0.29771027]\n [ 0.10964759 0.0128466 0.19805442]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwOeHEcLj9r+UhpRSlIwBbJRLMowBdJRHQKdmqRWcSXd1fZQoaAZoCWgPQwhXdyy2SUXov5SGlFKUaBVLMmgWR0CnZmvvSc9XdX2UKGgGaAloD0MIU7MHWoGh5r+UhpRSlGgVSzJoFkdAp2YgG2TgVHV9lChoBmgJaA9DCC+H3XcMj+C/lIaUUpRoFUsyaBZHQKdl2ObRWtF1fZQoaAZoCWgPQwjqr1dYcL/uv5SGlFKUaBVLMmgWR0CnZ8laB7NTdX2UKGgGaAloD0MIINRFCmVh7b+UhpRSlGgVSzJoFkdAp2eMQVbiZXV9lChoBmgJaA9DCGoWaHdIse+/lIaUUpRoFUsyaBZHQKdnQHVwxWV1fZQoaAZoCWgPQwjLEwg7xWryv5SGlFKUaBVLMmgWR0CnZvlKK509dX2UKGgGaAloD0MId2fttguN9L+UhpRSlGgVSzJoFkdAp2mGPvKEFnV9lChoBmgJaA9DCEX11sBWCe+/lIaUUpRoFUsyaBZHQKdpSjQiRnx1fZQoaAZoCWgPQwjyJVRweAH0v5SGlFKUaBVLMmgWR0CnaP9zfaYedX2UKGgGaAloD0MIF/IIbqRs8b+UhpRSlGgVSzJoFkdAp2i5Ke05VHV9lChoBmgJaA9DCFGFP8ObNe2/lIaUUpRoFUsyaBZHQKdrbiVB2Oh1fZQoaAZoCWgPQwjN6bKY2Hzwv5SGlFKUaBVLMmgWR0CnazJEhJRPdX2UKGgGaAloD0MI9zx/2qhO9L+UhpRSlGgVSzJoFkdAp2rnn+yZ8nV9lChoBmgJaA9DCLou/OB86u2/lIaUUpRoFUsyaBZHQKdqoZvUBn11fZQoaAZoCWgPQwiyKsJNRtX0v5SGlFKUaBVLMmgWR0CnbXUaQ3gldX2UKGgGaAloD0MIB+v/HOZL67+UhpRSlGgVSzJoFkdAp2048SwnpnV9lChoBmgJaA9DCP5EZcOaSuK/lIaUUpRoFUsyaBZHQKds7httQ9B1fZQoaAZoCWgPQwjb+uk/az7xv5SGlFKUaBVLMmgWR0CnbKfDLr5ZdX2UKGgGaAloD0MIoUs49BaP47+UhpRSlGgVSzJoFkdAp29glSjxkXV9lChoBmgJaA9DCKA3FakwtuK/lIaUUpRoFUsyaBZHQKdvJH80k4Z1fZQoaAZoCWgPQwh4fHvXoG/yv5SGlFKUaBVLMmgWR0CnbtnCO3lTdX2UKGgGaAloD0MIxhhYx/HD7b+UhpRSlGgVSzJoFkdAp26Ts0HhTHV9lChoBmgJaA9DCJbNHJJaKOC/lIaUUpRoFUsyaBZHQKdxYiCaqjt1fZQoaAZoCWgPQwjG+gYmN4rdv5SGlFKUaBVLMmgWR0CncST9KmKqdX2UKGgGaAloD0MIj1N0JJf/6r+UhpRSlGgVSzJoFkdAp3DZSP2f03V9lChoBmgJaA9DCIOj5NU5Bua/lIaUUpRoFUsyaBZHQKdwkqdYnv51fZQoaAZoCWgPQwhQOLu1TIbYv5SGlFKUaBVLMmgWR0Cncm3/giu/dX2UKGgGaAloD0MIDaX2ItqO27+UhpRSlGgVSzJoFkdAp3Iw3vQWvnV9lChoBmgJaA9DCO0pOSf2UOG/lIaUUpRoFUsyaBZHQKdx5R8+ial1fZQoaAZoCWgPQwhnCwithy/rv5SGlFKUaBVLMmgWR0CncZ3oLXtjdX2UKGgGaAloD0MIXP+uz5z12r+UhpRSlGgVSzJoFkdAp3N+Tkhib3V9lChoBmgJaA9DCNBf6BGj59u/lIaUUpRoFUsyaBZHQKdzQRNATqV1fZQoaAZoCWgPQwiV1XQ90XXdv5SGlFKUaBVLMmgWR0CncvU9QoCudX2UKGgGaAloD0MIhZUKKqp+4r+UhpRSlGgVSzJoFkdAp3Kt7SiM53V9lChoBmgJaA9DCINpGD4ipty/lIaUUpRoFUsyaBZHQKd0it7rs0J1fZQoaAZoCWgPQwjUghd9BWnhv5SGlFKUaBVLMmgWR0CndE2r4nF6dX2UKGgGaAloD0MIFCS2uwfo57+UhpRSlGgVSzJoFkdAp3QB1A7gbnV9lChoBmgJaA9DCLhZvFgYouG/lIaUUpRoFUsyaBZHQKdzuqaw2VF1fZQoaAZoCWgPQwgvbTgsDfzVv5SGlFKUaBVLMmgWR0CndZyG8EmqdX2UKGgGaAloD0MIHt5zYDlC4L+UhpRSlGgVSzJoFkdAp3VfStvGZXV9lChoBmgJaA9DCE30+Sgjrua/lIaUUpRoFUsyaBZHQKd1E2uxKQJ1fZQoaAZoCWgPQwhnZfuQt1zQv5SGlFKUaBVLMmgWR0CndMwnhKlIdX2UKGgGaAloD0MIVp3VAntM47+UhpRSlGgVSzJoFkdAp3arYRNAT3V9lChoBmgJaA9DCB75g4Hn3ta/lIaUUpRoFUsyaBZHQKd2bkjopx51fZQoaAZoCWgPQwjAkqtY/KbQv5SGlFKUaBVLMmgWR0CndiKR2bG4dX2UKGgGaAloD0MIaK8+Hvru1r+UhpRSlGgVSzJoFkdAp3Xbafzz3HV9lChoBmgJaA9DCPZ7Yp0q3+C/lIaUUpRoFUsyaBZHQKd34t4iX6Z1fZQoaAZoCWgPQwg+y/Pg7qzhv5SGlFKUaBVLMmgWR0Cnd6XLeQ+2dX2UKGgGaAloD0MIzy9K0F/o2L+UhpRSlGgVSzJoFkdAp3daGetjkXV9lChoBmgJaA9DCMIzoUliSee/lIaUUpRoFUsyaBZHQKd3E2a2F391fZQoaAZoCWgPQwjGMCdok8PTv5SGlFKUaBVLMmgWR0CnePMenyd4dX2UKGgGaAloD0MImgrxSLw83b+UhpRSlGgVSzJoFkdAp3i17Y02tXV9lChoBmgJaA9DCCdok8Mnndy/lIaUUpRoFUsyaBZHQKd4aiYb83x1fZQoaAZoCWgPQwiVRszs85jhv5SGlFKUaBVLMmgWR0CneCLuIAOsdX2UKGgGaAloD0MIX2Is0y+R4L+UhpRSlGgVSzJoFkdAp3oJ8F6iTXV9lChoBmgJaA9DCG1VEtkHWdi/lIaUUpRoFUsyaBZHQKd5zOZb6gx1fZQoaAZoCWgPQwiGrG71nPTnv5SGlFKUaBVLMmgWR0CneYEXUH6edX2UKGgGaAloD0MI5DJuaqD56L+UhpRSlGgVSzJoFkdAp3k51HOKO3V9lChoBmgJaA9DCGDq501FKtK/lIaUUpRoFUsyaBZHQKd7HzasZHd1fZQoaAZoCWgPQwhTCOQSRx7ev5SGlFKUaBVLMmgWR0CneuInrpqzdX2UKGgGaAloD0MITcCvkSQI2L+UhpRSlGgVSzJoFkdAp3qWiJwbVHV9lChoBmgJaA9DCJvG9lrQe92/lIaUUpRoFUsyaBZHQKd6T2GqPwN1fZQoaAZoCWgPQwjEswQZARXdv5SGlFKUaBVLMmgWR0CnfC7GNrCWdX2UKGgGaAloD0MIX0VGBySh8L+UhpRSlGgVSzJoFkdAp3vxi3G4qnV9lChoBmgJaA9DCFa6u86GfOG/lIaUUpRoFUsyaBZHQKd7pb0OEuh1fZQoaAZoCWgPQwgBMJ5BQ//bv5SGlFKUaBVLMmgWR0Cne155AyEddX2UKGgGaAloD0MIk4ychT1t4b+UhpRSlGgVSzJoFkdAp30+rp7kXHV9lChoBmgJaA9DCBzuI7cmXeG/lIaUUpRoFUsyaBZHQKd9AVJtix51fZQoaAZoCWgPQwgcRdYaSu3Tv5SGlFKUaBVLMmgWR0CnfLVzIV/MdX2UKGgGaAloD0MICCC1iZP72b+UhpRSlGgVSzJoFkdAp3xuLtNSInV9lChoBmgJaA9DCFN1j2yuGuG/lIaUUpRoFUsyaBZHQKd+UKfnOjZ1fZQoaAZoCWgPQwgUQZyHE5jfv5SGlFKUaBVLMmgWR0CnfhOIAOridX2UKGgGaAloD0MI8mH2su200b+UhpRSlGgVSzJoFkdAp33HtOVPe3V9lChoBmgJaA9DCOgxyjMvh82/lIaUUpRoFUsyaBZHQKd9gGfwqiJ1fZQoaAZoCWgPQwiK52wBoXXgv5SGlFKUaBVLMmgWR0Cnf174SHuadX2UKGgGaAloD0MIRluVRPZB3b+UhpRSlGgVSzJoFkdAp38iBf8dgnV9lChoBmgJaA9DCCtsBrggW+C/lIaUUpRoFUsyaBZHQKd+1lNDc/N1fZQoaAZoCWgPQwhTIR6Jl6fav5SGlFKUaBVLMmgWR0Cnfo8xCY1HdX2UKGgGaAloD0MIvaseMA8Z4L+UhpRSlGgVSzJoFkdAp4Br/n4fwXV9lChoBmgJaA9DCG0eh8H8leC/lIaUUpRoFUsyaBZHQKeALtUn5SF1fZQoaAZoCWgPQwijdVQ1QdTUv5SGlFKUaBVLMmgWR0Cnf+MUIsy0dX2UKGgGaAloD0MIPGu3XWiu3b+UhpRSlGgVSzJoFkdAp3+b2zv7WXV9lChoBmgJaA9DCGO2ZFWEm9q/lIaUUpRoFUsyaBZHQKeBhU7Sy+p1fZQoaAZoCWgPQwg/ARQjS2bnv5SGlFKUaBVLMmgWR0CngUkf1YhddX2UKGgGaAloD0MI2uIan8n+2b+UhpRSlGgVSzJoFkdAp4D+UUwi7nV9lChoBmgJaA9DCN/F+3H75cG/lIaUUpRoFUsyaBZHQKeAt9w3o9t1fZQoaAZoCWgPQwjrxOV4BWLwv5SGlFKUaBVLMmgWR0Cngpcry1/ldX2UKGgGaAloD0MIkj8YeO695L+UhpRSlGgVSzJoFkdAp4JZ7u2JBXV9lChoBmgJaA9DCEwYzcr2Idy/lIaUUpRoFUsyaBZHQKeCDgXMyJt1fZQoaAZoCWgPQwhSmWIOgo7Mv5SGlFKUaBVLMmgWR0CngcbDdgv2dX2UKGgGaAloD0MIokPgSKBB7b+UhpRSlGgVSzJoFkdAp4O+VPepGXV9lChoBmgJaA9DCADjGTT0T+i/lIaUUpRoFUsyaBZHQKeDgW56MR91fZQoaAZoCWgPQwgn3ZbIBafzv5SGlFKUaBVLMmgWR0CngzXqzJIUdX2UKGgGaAloD0MIpwUv+gpS+b+UhpRSlGgVSzJoFkdAp4LvkLhJiHV9lChoBmgJaA9DCLHc0mpI3Oi/lIaUUpRoFUsyaBZHQKeEyqx1PnB1fZQoaAZoCWgPQwh6/N6mP3vhv5SGlFKUaBVLMmgWR0CnhI2Gh24edX2UKGgGaAloD0MIyqZc4V2u+b+UhpRSlGgVSzJoFkdAp4RB3mmtQ3V9lChoBmgJaA9DCGcsms5OBsm/lIaUUpRoFUsyaBZHQKeD+r5qM3t1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27c07a6c6fb59956f7a64ab297f0df8bb5bad49afa4fbedf81ec8707f0a70782
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd29787a9b230540ca43fbcd8209eea6e31606098345b22cf2bbbccec4d0a828
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fec79922dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec79928900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684894371266279504, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhWPaPpwwZDs8Ag8/hWPaPpwwZDs8Ag8/hWPaPpwwZDs8Ag8/hWPaPpwwZDs8Ag8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVL3vvrJbqz9gyao/F4oMPhIje7/+s6c/YWm7P9EkKr4fahA/Zmd6v2sKRb/OtoE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuFY9o+nDBkOzwCDz9ie4g72ugbukyiOzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42654052 0.0034819 0.55862784]\n [0.42654052 0.0034819 0.55862784]\n [0.42654052 0.0034819 0.55862784]\n [0.42654052 0.0034819 0.55862784]]", "desired_goal": "[[-0.46824133 1.3387358 1.3342705 ]\n [ 0.13724552 -0.9810039 1.3101804 ]\n [ 1.4641534 -0.16615607 0.5641193 ]\n [-0.97814023 -0.7696902 1.0133913 ]]", "observation": "[[ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]\n [ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]\n [ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]\n [ 0.42654052 0.0034819 0.55862784 0.0041651 -0.00059475 0.00286307]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhDkCvYXLBr7EfO08IXUNPv0aYr150zY9rfunPZUx5z17bZg+647gPYd6UjzHzko+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03179313 -0.13163574 0.02899016]\n [ 0.13814212 -0.05520152 0.04463527]\n [ 0.082023 0.11288754 0.29771027]\n [ 0.10964759 0.0128466 0.19805442]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwOeHEcLj9r+UhpRSlIwBbJRLMowBdJRHQKdmqRWcSXd1fZQoaAZoCWgPQwhXdyy2SUXov5SGlFKUaBVLMmgWR0CnZmvvSc9XdX2UKGgGaAloD0MIU7MHWoGh5r+UhpRSlGgVSzJoFkdAp2YgG2TgVHV9lChoBmgJaA9DCC+H3XcMj+C/lIaUUpRoFUsyaBZHQKdl2ObRWtF1fZQoaAZoCWgPQwjqr1dYcL/uv5SGlFKUaBVLMmgWR0CnZ8laB7NTdX2UKGgGaAloD0MIINRFCmVh7b+UhpRSlGgVSzJoFkdAp2eMQVbiZXV9lChoBmgJaA9DCGoWaHdIse+/lIaUUpRoFUsyaBZHQKdnQHVwxWV1fZQoaAZoCWgPQwjLEwg7xWryv5SGlFKUaBVLMmgWR0CnZvlKK509dX2UKGgGaAloD0MId2fttguN9L+UhpRSlGgVSzJoFkdAp2mGPvKEFnV9lChoBmgJaA9DCEX11sBWCe+/lIaUUpRoFUsyaBZHQKdpSjQiRnx1fZQoaAZoCWgPQwjyJVRweAH0v5SGlFKUaBVLMmgWR0CnaP9zfaYedX2UKGgGaAloD0MIF/IIbqRs8b+UhpRSlGgVSzJoFkdAp2i5Ke05VHV9lChoBmgJaA9DCFGFP8ObNe2/lIaUUpRoFUsyaBZHQKdrbiVB2Oh1fZQoaAZoCWgPQwjN6bKY2Hzwv5SGlFKUaBVLMmgWR0CnazJEhJRPdX2UKGgGaAloD0MI9zx/2qhO9L+UhpRSlGgVSzJoFkdAp2rnn+yZ8nV9lChoBmgJaA9DCLou/OB86u2/lIaUUpRoFUsyaBZHQKdqoZvUBn11fZQoaAZoCWgPQwiyKsJNRtX0v5SGlFKUaBVLMmgWR0CnbXUaQ3gldX2UKGgGaAloD0MIB+v/HOZL67+UhpRSlGgVSzJoFkdAp2048SwnpnV9lChoBmgJaA9DCP5EZcOaSuK/lIaUUpRoFUsyaBZHQKds7httQ9B1fZQoaAZoCWgPQwjb+uk/az7xv5SGlFKUaBVLMmgWR0CnbKfDLr5ZdX2UKGgGaAloD0MIoUs49BaP47+UhpRSlGgVSzJoFkdAp29glSjxkXV9lChoBmgJaA9DCKA3FakwtuK/lIaUUpRoFUsyaBZHQKdvJH80k4Z1fZQoaAZoCWgPQwh4fHvXoG/yv5SGlFKUaBVLMmgWR0CnbtnCO3lTdX2UKGgGaAloD0MIxhhYx/HD7b+UhpRSlGgVSzJoFkdAp26Ts0HhTHV9lChoBmgJaA9DCJbNHJJaKOC/lIaUUpRoFUsyaBZHQKdxYiCaqjt1fZQoaAZoCWgPQwjG+gYmN4rdv5SGlFKUaBVLMmgWR0CncST9KmKqdX2UKGgGaAloD0MIj1N0JJf/6r+UhpRSlGgVSzJoFkdAp3DZSP2f03V9lChoBmgJaA9DCIOj5NU5Bua/lIaUUpRoFUsyaBZHQKdwkqdYnv51fZQoaAZoCWgPQwhQOLu1TIbYv5SGlFKUaBVLMmgWR0Cncm3/giu/dX2UKGgGaAloD0MIDaX2ItqO27+UhpRSlGgVSzJoFkdAp3Iw3vQWvnV9lChoBmgJaA9DCO0pOSf2UOG/lIaUUpRoFUsyaBZHQKdx5R8+ial1fZQoaAZoCWgPQwhnCwithy/rv5SGlFKUaBVLMmgWR0CncZ3oLXtjdX2UKGgGaAloD0MIXP+uz5z12r+UhpRSlGgVSzJoFkdAp3N+Tkhib3V9lChoBmgJaA9DCNBf6BGj59u/lIaUUpRoFUsyaBZHQKdzQRNATqV1fZQoaAZoCWgPQwiV1XQ90XXdv5SGlFKUaBVLMmgWR0CncvU9QoCudX2UKGgGaAloD0MIhZUKKqp+4r+UhpRSlGgVSzJoFkdAp3Kt7SiM53V9lChoBmgJaA9DCINpGD4ipty/lIaUUpRoFUsyaBZHQKd0it7rs0J1fZQoaAZoCWgPQwjUghd9BWnhv5SGlFKUaBVLMmgWR0CndE2r4nF6dX2UKGgGaAloD0MIFCS2uwfo57+UhpRSlGgVSzJoFkdAp3QB1A7gbnV9lChoBmgJaA9DCLhZvFgYouG/lIaUUpRoFUsyaBZHQKdzuqaw2VF1fZQoaAZoCWgPQwgvbTgsDfzVv5SGlFKUaBVLMmgWR0CndZyG8EmqdX2UKGgGaAloD0MIHt5zYDlC4L+UhpRSlGgVSzJoFkdAp3VfStvGZXV9lChoBmgJaA9DCE30+Sgjrua/lIaUUpRoFUsyaBZHQKd1E2uxKQJ1fZQoaAZoCWgPQwhnZfuQt1zQv5SGlFKUaBVLMmgWR0CndMwnhKlIdX2UKGgGaAloD0MIVp3VAntM47+UhpRSlGgVSzJoFkdAp3arYRNAT3V9lChoBmgJaA9DCB75g4Hn3ta/lIaUUpRoFUsyaBZHQKd2bkjopx51fZQoaAZoCWgPQwjAkqtY/KbQv5SGlFKUaBVLMmgWR0CndiKR2bG4dX2UKGgGaAloD0MIaK8+Hvru1r+UhpRSlGgVSzJoFkdAp3Xbafzz3HV9lChoBmgJaA9DCPZ7Yp0q3+C/lIaUUpRoFUsyaBZHQKd34t4iX6Z1fZQoaAZoCWgPQwg+y/Pg7qzhv5SGlFKUaBVLMmgWR0Cnd6XLeQ+2dX2UKGgGaAloD0MIzy9K0F/o2L+UhpRSlGgVSzJoFkdAp3daGetjkXV9lChoBmgJaA9DCMIzoUliSee/lIaUUpRoFUsyaBZHQKd3E2a2F391fZQoaAZoCWgPQwjGMCdok8PTv5SGlFKUaBVLMmgWR0CnePMenyd4dX2UKGgGaAloD0MImgrxSLw83b+UhpRSlGgVSzJoFkdAp3i17Y02tXV9lChoBmgJaA9DCCdok8Mnndy/lIaUUpRoFUsyaBZHQKd4aiYb83x1fZQoaAZoCWgPQwiVRszs85jhv5SGlFKUaBVLMmgWR0CneCLuIAOsdX2UKGgGaAloD0MIX2Is0y+R4L+UhpRSlGgVSzJoFkdAp3oJ8F6iTXV9lChoBmgJaA9DCG1VEtkHWdi/lIaUUpRoFUsyaBZHQKd5zOZb6gx1fZQoaAZoCWgPQwiGrG71nPTnv5SGlFKUaBVLMmgWR0CneYEXUH6edX2UKGgGaAloD0MI5DJuaqD56L+UhpRSlGgVSzJoFkdAp3k51HOKO3V9lChoBmgJaA9DCGDq501FKtK/lIaUUpRoFUsyaBZHQKd7HzasZHd1fZQoaAZoCWgPQwhTCOQSRx7ev5SGlFKUaBVLMmgWR0CneuInrpqzdX2UKGgGaAloD0MITcCvkSQI2L+UhpRSlGgVSzJoFkdAp3qWiJwbVHV9lChoBmgJaA9DCJvG9lrQe92/lIaUUpRoFUsyaBZHQKd6T2GqPwN1fZQoaAZoCWgPQwjEswQZARXdv5SGlFKUaBVLMmgWR0CnfC7GNrCWdX2UKGgGaAloD0MIX0VGBySh8L+UhpRSlGgVSzJoFkdAp3vxi3G4qnV9lChoBmgJaA9DCFa6u86GfOG/lIaUUpRoFUsyaBZHQKd7pb0OEuh1fZQoaAZoCWgPQwgBMJ5BQ//bv5SGlFKUaBVLMmgWR0Cne155AyEddX2UKGgGaAloD0MIk4ychT1t4b+UhpRSlGgVSzJoFkdAp30+rp7kXHV9lChoBmgJaA9DCBzuI7cmXeG/lIaUUpRoFUsyaBZHQKd9AVJtix51fZQoaAZoCWgPQwgcRdYaSu3Tv5SGlFKUaBVLMmgWR0CnfLVzIV/MdX2UKGgGaAloD0MICCC1iZP72b+UhpRSlGgVSzJoFkdAp3xuLtNSInV9lChoBmgJaA9DCFN1j2yuGuG/lIaUUpRoFUsyaBZHQKd+UKfnOjZ1fZQoaAZoCWgPQwgUQZyHE5jfv5SGlFKUaBVLMmgWR0CnfhOIAOridX2UKGgGaAloD0MI8mH2su200b+UhpRSlGgVSzJoFkdAp33HtOVPe3V9lChoBmgJaA9DCOgxyjMvh82/lIaUUpRoFUsyaBZHQKd9gGfwqiJ1fZQoaAZoCWgPQwiK52wBoXXgv5SGlFKUaBVLMmgWR0Cnf174SHuadX2UKGgGaAloD0MIRluVRPZB3b+UhpRSlGgVSzJoFkdAp38iBf8dgnV9lChoBmgJaA9DCCtsBrggW+C/lIaUUpRoFUsyaBZHQKd+1lNDc/N1fZQoaAZoCWgPQwhTIR6Jl6fav5SGlFKUaBVLMmgWR0Cnfo8xCY1HdX2UKGgGaAloD0MIvaseMA8Z4L+UhpRSlGgVSzJoFkdAp4Br/n4fwXV9lChoBmgJaA9DCG0eh8H8leC/lIaUUpRoFUsyaBZHQKeALtUn5SF1fZQoaAZoCWgPQwijdVQ1QdTUv5SGlFKUaBVLMmgWR0Cnf+MUIsy0dX2UKGgGaAloD0MIPGu3XWiu3b+UhpRSlGgVSzJoFkdAp3+b2zv7WXV9lChoBmgJaA9DCGO2ZFWEm9q/lIaUUpRoFUsyaBZHQKeBhU7Sy+p1fZQoaAZoCWgPQwg/ARQjS2bnv5SGlFKUaBVLMmgWR0CngUkf1YhddX2UKGgGaAloD0MI2uIan8n+2b+UhpRSlGgVSzJoFkdAp4D+UUwi7nV9lChoBmgJaA9DCN/F+3H75cG/lIaUUpRoFUsyaBZHQKeAt9w3o9t1fZQoaAZoCWgPQwjrxOV4BWLwv5SGlFKUaBVLMmgWR0Cngpcry1/ldX2UKGgGaAloD0MIkj8YeO695L+UhpRSlGgVSzJoFkdAp4JZ7u2JBXV9lChoBmgJaA9DCEwYzcr2Idy/lIaUUpRoFUsyaBZHQKeCDgXMyJt1fZQoaAZoCWgPQwhSmWIOgo7Mv5SGlFKUaBVLMmgWR0CngcbDdgv2dX2UKGgGaAloD0MIokPgSKBB7b+UhpRSlGgVSzJoFkdAp4O+VPepGXV9lChoBmgJaA9DCADjGTT0T+i/lIaUUpRoFUsyaBZHQKeDgW56MR91fZQoaAZoCWgPQwgn3ZbIBafzv5SGlFKUaBVLMmgWR0CngzXqzJIUdX2UKGgGaAloD0MIpwUv+gpS+b+UhpRSlGgVSzJoFkdAp4LvkLhJiHV9lChoBmgJaA9DCLHc0mpI3Oi/lIaUUpRoFUsyaBZHQKeEyqx1PnB1fZQoaAZoCWgPQwh6/N6mP3vhv5SGlFKUaBVLMmgWR0CnhI2Gh24edX2UKGgGaAloD0MIyqZc4V2u+b+UhpRSlGgVSzJoFkdAp4RB3mmtQ3V9lChoBmgJaA9DCGcsms5OBsm/lIaUUpRoFUsyaBZHQKeD+r5qM3t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (308 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.8473188550444319, "std_reward": 0.2707178499942187, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-24T03:03:06.321840"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b4f8942f6febf7bf1e076adf6815d8df91622f6551c9d16411c9902ed6a76cc
|
3 |
+
size 2387
|