File size: 4,462 Bytes
54078ab 0938d09 54078ab 0938d09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
language:
- en
- pt
datasets:
- cnmoro/WizardVicuna-PTBR-Instruct-Clean
model-index:
- name: Mistral-7B-Portuguese
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 58.08
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 48.68
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 37.08
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 90.31
name: f1-macro
- type: pearson
value: 76.55
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 58.84
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 79.21
name: f1-macro
- type: f1_macro
value: 68.87
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 64.71
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Mistral-7B-Portuguese
name: Open Portuguese LLM Leaderboard
---
This is a finetuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) using [unsloth](https://github.com/unslothai/unsloth) on a instruct portuguese dataset, as an attempt to improve the performance of the model on the language.
No benchmarks have been executed yet.
The original prompt format was used:
```plaintext
<s>[INST] {Prompt goes here} [/INST]
```
# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/cnmoro/Mistral-7B-Portuguese)
| Metric | Value |
|--------------------------|--------|
|Average |**64.7**|
|ENEM Challenge (No Images)| 58.08|
|BLUEX (No Images) | 48.68|
|OAB Exams | 37.08|
|Assin2 RTE | 90.31|
|Assin2 STS | 76.55|
|FaQuAD NLI | 58.84|
|HateBR Binary | 79.21|
|PT Hate Speech Binary | 68.87|
|tweetSentBR | 64.71|
|