File size: 8,803 Bytes
fd3d86f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- text-generation-inference
- llama-cpp
- gguf-my-repo
datasets:
- nicholasKluge/instruct-aira-dataset-v3
- cnmoro/GPT4-500k-Augmented-PTBR-Clean
- rhaymison/orca-math-portuguese-64k
- nicholasKluge/reward-aira-dataset
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: <instruction>Cite algumas bandas de rock brasileiras famosas.</instruction>
example_title: Exemplo
- text: <instruction>Invente uma história sobre um encanador com poderes mágicos.</instruction>
example_title: Exemplo
- text: <instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction>
example_title: Exemplo
- text: <instruction>Diga o nome de uma maravilha culinária característica da cosinha
Portuguesa?</instruction>
example_title: Exemplo
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 20
top_p: 0.2
max_new_tokens: 150
co2_eq_emissions:
emissions: 42270
source: CodeCarbon
training_type: pre-training
geographical_location: Germany
hardware_used: NVIDIA A100-SXM4-80GB
base_model: TucanoBR/Tucano-2b4-Instruct
model-index:
- name: Tucano-2b4-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: CALAME-PT
type: NOVA-vision-language/calame-pt
split: all
args:
num_few_shot: 0
metrics:
- type: acc
value: 57.66
name: accuracy
source:
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
name: Context-Aware LAnguage Modeling Evaluation for Portuguese
- task:
type: text-generation
name: Text Generation
dataset:
name: LAMBADA-PT
type: TucanoBR/lambada-pt
split: train
args:
num_few_shot: 0
metrics:
- type: acc
value: 39.92
name: accuracy
source:
url: https://huggingface.co/datasets/TucanoBR/lambada-pt
name: LAMBADA-PT
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 20.43
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 22.81
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 24.83
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.39
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 10
metrics:
- type: pearson
value: 6.31
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 27.7
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 29.18
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 43.11
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: ARC-Challenge (PT)
type: arc_pt
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 32.05
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (PT)
type: hellaswag_pt
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 48.28
name: normalized accuracy
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (PT)
type: truthfulqa_pt
args:
num_few_shot: 0
metrics:
- type: mc2
value: 38.44
name: bleurt
source:
url: https://github.com/nlp-uoregon/mlmm-evaluation
name: Evaluation Framework for Multilingual Large Language Models
- task:
type: text-generation
name: Text Generation
dataset:
name: Alpaca-Eval (PT)
type: alpaca_eval_pt
args:
num_few_shot: 0
metrics:
- type: lc_winrate
value: 13.0
name: length controlled winrate
source:
url: https://github.com/tatsu-lab/alpaca_eval
name: AlpacaEval
---
# cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from [`TucanoBR/Tucano-2b4-Instruct`](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
```
|