File size: 8,803 Bytes
fd3d86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- text-generation-inference
- llama-cpp
- gguf-my-repo
datasets:
- nicholasKluge/instruct-aira-dataset-v3
- cnmoro/GPT4-500k-Augmented-PTBR-Clean
- rhaymison/orca-math-portuguese-64k
- nicholasKluge/reward-aira-dataset
metrics:
- perplexity
pipeline_tag: text-generation
widget:
- text: <instruction>Cite algumas bandas de rock brasileiras famosas.</instruction>
  example_title: Exemplo
- text: <instruction>Invente uma história sobre um encanador com poderes mágicos.</instruction>
  example_title: Exemplo
- text: <instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction>
  example_title: Exemplo
- text: <instruction>Diga o nome de uma maravilha culinária característica da cosinha
    Portuguesa?</instruction>
  example_title: Exemplo
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 20
    top_p: 0.2
    max_new_tokens: 150
co2_eq_emissions:
  emissions: 42270
  source: CodeCarbon
  training_type: pre-training
  geographical_location: Germany
  hardware_used: NVIDIA A100-SXM4-80GB
base_model: TucanoBR/Tucano-2b4-Instruct
model-index:
- name: Tucano-2b4-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: CALAME-PT
      type: NOVA-vision-language/calame-pt
      split: all
      args:
        num_few_shot: 0
    metrics:
    - type: acc
      value: 57.66
      name: accuracy
    source:
      url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
      name: Context-Aware LAnguage Modeling Evaluation for Portuguese
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: LAMBADA-PT
      type: TucanoBR/lambada-pt
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc
      value: 39.92
      name: accuracy
    source:
      url: https://huggingface.co/datasets/TucanoBR/lambada-pt
      name: LAMBADA-PT
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 20.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 22.81
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 24.83
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 43.39
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 10
    metrics:
    - type: pearson
      value: 6.31
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 43.97
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 27.7
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 29.18
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia-temp/tweetsentbr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 43.11
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ARC-Challenge (PT)
      type: arc_pt
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 32.05
      name: normalized accuracy
    source:
      url: https://github.com/nlp-uoregon/mlmm-evaluation
      name: Evaluation Framework for Multilingual Large Language Models
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (PT)
      type: hellaswag_pt
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 48.28
      name: normalized accuracy
    source:
      url: https://github.com/nlp-uoregon/mlmm-evaluation
      name: Evaluation Framework for Multilingual Large Language Models
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (PT)
      type: truthfulqa_pt
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 38.44
      name: bleurt
    source:
      url: https://github.com/nlp-uoregon/mlmm-evaluation
      name: Evaluation Framework for Multilingual Large Language Models
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Alpaca-Eval (PT)
      type: alpaca_eval_pt
      args:
        num_few_shot: 0
    metrics:
    - type: lc_winrate
      value: 13.0
      name: length controlled winrate
    source:
      url: https://github.com/tatsu-lab/alpaca_eval
      name: AlpacaEval
---

# cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF
This model was converted to GGUF format from [`TucanoBR/Tucano-2b4-Instruct`](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
```