--- tags: - autotrain - tabular - regression - tabular-regression datasets: - autotrain-dn6m8-0r8r6/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.9984788500175956 - mse: 2424.0886496905105 - mae: 26.34647989435065 - rmse: 49.23503477901189 - rmsle: 0.028818836691457343 - loss: 49.23503477901189 ## Best Params - learning_rate: 0.12077471502182306 - reg_lambda: 1.105329890230882e-08 - reg_alpha: 1.4774392499746047 - subsample: 0.73978922085205 - colsample_bytree: 0.8233279668396214 - max_depth: 4 - early_stopping_rounds: 243 - n_estimators: 15000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```