cocorooxinnn commited on
Commit
da1b817
·
verified ·
1 Parent(s): 86e5406

End of training

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: facebook/bart-large-mnli
7
+ metrics:
8
+ - f1
9
+ - precision
10
+ - recall
11
+ - accuracy
12
+ model-index:
13
+ - name: eu_adapter01
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # eu_adapter01
21
+
22
+ This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1792
25
+ - F1: 0.9346
26
+ - Precision: 0.9199
27
+ - Recall: 0.9499
28
+ - Accuracy: 0.9336
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0002
48
+ - train_batch_size: 64
49
+ - eval_batch_size: 64
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 20
54
+ - num_epochs: 2
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
59
+ |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
60
+ | 0.4659 | 0.0933 | 50 | 0.3040 | 0.8600 | 0.8937 | 0.8288 | 0.8652 |
61
+ | 0.3204 | 0.1866 | 100 | 0.2666 | 0.8818 | 0.9196 | 0.8470 | 0.8865 |
62
+ | 0.3079 | 0.2799 | 150 | 0.2509 | 0.9094 | 0.8806 | 0.9401 | 0.9064 |
63
+ | 0.2854 | 0.3731 | 200 | 0.2419 | 0.9133 | 0.8813 | 0.9477 | 0.9101 |
64
+ | 0.2801 | 0.4664 | 250 | 0.2457 | 0.8902 | 0.9251 | 0.8579 | 0.8943 |
65
+ | 0.2722 | 0.5597 | 300 | 0.2344 | 0.9072 | 0.9219 | 0.8930 | 0.9087 |
66
+ | 0.2668 | 0.6530 | 350 | 0.2156 | 0.9221 | 0.9027 | 0.9423 | 0.9204 |
67
+ | 0.265 | 0.7463 | 400 | 0.2160 | 0.9117 | 0.9286 | 0.8955 | 0.9133 |
68
+ | 0.2439 | 0.8396 | 450 | 0.2017 | 0.9240 | 0.9144 | 0.9338 | 0.9233 |
69
+ | 0.2253 | 0.9328 | 500 | 0.2043 | 0.9305 | 0.9059 | 0.9564 | 0.9286 |
70
+ | 0.2411 | 1.0261 | 550 | 0.2170 | 0.9217 | 0.9254 | 0.9181 | 0.9220 |
71
+ | 0.2236 | 1.1194 | 600 | 0.1978 | 0.9308 | 0.9104 | 0.9521 | 0.9292 |
72
+ | 0.2095 | 1.2127 | 650 | 0.1884 | 0.9277 | 0.9213 | 0.9341 | 0.9272 |
73
+ | 0.2149 | 1.3060 | 700 | 0.1881 | 0.9323 | 0.9197 | 0.9453 | 0.9314 |
74
+ | 0.1823 | 1.3993 | 750 | 0.1931 | 0.9297 | 0.9253 | 0.9341 | 0.9294 |
75
+ | 0.2052 | 1.4925 | 800 | 0.1838 | 0.9327 | 0.9193 | 0.9464 | 0.9317 |
76
+ | 0.199 | 1.5858 | 850 | 0.1836 | 0.9313 | 0.9269 | 0.9357 | 0.9310 |
77
+ | 0.1978 | 1.6791 | 900 | 0.1861 | 0.9346 | 0.9132 | 0.9570 | 0.9331 |
78
+ | 0.2024 | 1.7724 | 950 | 0.1832 | 0.9349 | 0.9203 | 0.9499 | 0.9339 |
79
+ | 0.1861 | 1.8657 | 1000 | 0.1818 | 0.9353 | 0.9204 | 0.9507 | 0.9343 |
80
+ | 0.2032 | 1.9590 | 1050 | 0.1792 | 0.9346 | 0.9199 | 0.9499 | 0.9336 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - PEFT 0.10.0
86
+ - Transformers 4.41.2
87
+ - Pytorch 2.2.0+cu121
88
+ - Datasets 2.19.1
89
+ - Tokenizers 0.19.1