End of training
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: facebook/bart-large-mnli
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: eu_adapter01
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# eu_adapter01
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1792
|
25 |
+
- F1: 0.9346
|
26 |
+
- Precision: 0.9199
|
27 |
+
- Recall: 0.9499
|
28 |
+
- Accuracy: 0.9336
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0002
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 20
|
54 |
+
- num_epochs: 2
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
|
59 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
|
60 |
+
| 0.4659 | 0.0933 | 50 | 0.3040 | 0.8600 | 0.8937 | 0.8288 | 0.8652 |
|
61 |
+
| 0.3204 | 0.1866 | 100 | 0.2666 | 0.8818 | 0.9196 | 0.8470 | 0.8865 |
|
62 |
+
| 0.3079 | 0.2799 | 150 | 0.2509 | 0.9094 | 0.8806 | 0.9401 | 0.9064 |
|
63 |
+
| 0.2854 | 0.3731 | 200 | 0.2419 | 0.9133 | 0.8813 | 0.9477 | 0.9101 |
|
64 |
+
| 0.2801 | 0.4664 | 250 | 0.2457 | 0.8902 | 0.9251 | 0.8579 | 0.8943 |
|
65 |
+
| 0.2722 | 0.5597 | 300 | 0.2344 | 0.9072 | 0.9219 | 0.8930 | 0.9087 |
|
66 |
+
| 0.2668 | 0.6530 | 350 | 0.2156 | 0.9221 | 0.9027 | 0.9423 | 0.9204 |
|
67 |
+
| 0.265 | 0.7463 | 400 | 0.2160 | 0.9117 | 0.9286 | 0.8955 | 0.9133 |
|
68 |
+
| 0.2439 | 0.8396 | 450 | 0.2017 | 0.9240 | 0.9144 | 0.9338 | 0.9233 |
|
69 |
+
| 0.2253 | 0.9328 | 500 | 0.2043 | 0.9305 | 0.9059 | 0.9564 | 0.9286 |
|
70 |
+
| 0.2411 | 1.0261 | 550 | 0.2170 | 0.9217 | 0.9254 | 0.9181 | 0.9220 |
|
71 |
+
| 0.2236 | 1.1194 | 600 | 0.1978 | 0.9308 | 0.9104 | 0.9521 | 0.9292 |
|
72 |
+
| 0.2095 | 1.2127 | 650 | 0.1884 | 0.9277 | 0.9213 | 0.9341 | 0.9272 |
|
73 |
+
| 0.2149 | 1.3060 | 700 | 0.1881 | 0.9323 | 0.9197 | 0.9453 | 0.9314 |
|
74 |
+
| 0.1823 | 1.3993 | 750 | 0.1931 | 0.9297 | 0.9253 | 0.9341 | 0.9294 |
|
75 |
+
| 0.2052 | 1.4925 | 800 | 0.1838 | 0.9327 | 0.9193 | 0.9464 | 0.9317 |
|
76 |
+
| 0.199 | 1.5858 | 850 | 0.1836 | 0.9313 | 0.9269 | 0.9357 | 0.9310 |
|
77 |
+
| 0.1978 | 1.6791 | 900 | 0.1861 | 0.9346 | 0.9132 | 0.9570 | 0.9331 |
|
78 |
+
| 0.2024 | 1.7724 | 950 | 0.1832 | 0.9349 | 0.9203 | 0.9499 | 0.9339 |
|
79 |
+
| 0.1861 | 1.8657 | 1000 | 0.1818 | 0.9353 | 0.9204 | 0.9507 | 0.9343 |
|
80 |
+
| 0.2032 | 1.9590 | 1050 | 0.1792 | 0.9346 | 0.9199 | 0.9499 | 0.9336 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- PEFT 0.10.0
|
86 |
+
- Transformers 4.41.2
|
87 |
+
- Pytorch 2.2.0+cu121
|
88 |
+
- Datasets 2.19.1
|
89 |
+
- Tokenizers 0.19.1
|