Transformers
PyTorch
code
custom_code
Inference Endpoints
Dejiao Z commited on
Commit
e81a062
·
1 Parent(s): be97ea1

initial push

Browse files
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<mask>": 49152,
3
+ "<pad>": 49153
4
+ }
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "codesage/codesage-large-v2",
3
+ "architectures": [
4
+ "CodeSage"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "config_codesage.CodeSageConfig",
8
+ "AutoTokenizer": "tokenization_codesage.CodeSageTokenizer",
9
+ "AutoModel": "modeling_codesage.CodeSageModel",
10
+ "AutoModelForMaskedLM": "modeling_codesage.CodeSageForMaskedLM",
11
+ "AutoModelForSequenceClassification": "modeling_codesage.CodeSageForSequenceClassification"
12
+ },
13
+ "activation_function": "gelu_new",
14
+ "attention_dropout_prob": 0.1,
15
+ "embedding_dropout_prob": 0.1,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-05,
18
+ "hidden_size": 1024,
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
+ "intermediate_size": 8192,
22
+ "max_position_embeddings": 2048,
23
+ "residual_dropout_prob": 0.1,
24
+ "vocab_size": 49154
25
+ }
config_codesage.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+
7
+ CODESAGE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
8
+ "codesage/codesage-small-v2": "https://huggingface.co/codesage/codesage-small-v2/resolve/main/config.json",
9
+ "codesage/codesage-base-v2": "https://huggingface.co/codesage/codesage-base-v2/resolve/main/config.json",
10
+ "codesage/codesage-large-v2": "https://huggingface.co/codesage/codesage-large-v2/resolve/main/config.json",
11
+ }
12
+
13
+
14
+ class CodeSageConfig(PretrainedConfig):
15
+ model_type = "codesage"
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_size=50257,
20
+ max_position_embeddings=1024,
21
+ hidden_size=768,
22
+ num_hidden_layers=12,
23
+ num_attention_heads=12,
24
+ intermediate_size=3072,
25
+ activation_function="gelu_new",
26
+ residual_dropout_prob=0.1,
27
+ embedding_dropout_prob=0.1,
28
+ attention_dropout_prob=0.1,
29
+ layer_norm_epsilon=1e-5,
30
+ initializer_range=0.02,
31
+ position_embedding_type='absolute',
32
+ bos_token_id=0,
33
+ eos_token_id=0,
34
+ pad_token_id=49153,
35
+ **kwargs
36
+ ):
37
+ self.vocab_size = vocab_size
38
+ self.max_position_embeddings = max_position_embeddings
39
+ self.hidden_size = hidden_size
40
+ self.num_hidden_layers = num_hidden_layers
41
+ self.num_attention_heads = num_attention_heads
42
+ self.intermediate_size = intermediate_size
43
+ assert 'gelu' in activation_function
44
+ self.activation_function = activation_function
45
+ self.residual_dropout_prob = residual_dropout_prob
46
+ self.embedding_dropout_prob = embedding_dropout_prob
47
+ self.attention_dropout_prob = attention_dropout_prob
48
+ self.layer_norm_epsilon = layer_norm_epsilon
49
+ self.initializer_range = initializer_range
50
+ self.position_embedding_type = position_embedding_type
51
+
52
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_codesage.py ADDED
@@ -0,0 +1,426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
4
+
5
+ import math
6
+ import torch
7
+ import torch.utils.checkpoint
8
+ from torch import nn
9
+ from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
10
+ from transformers.activations import ACT2FN
11
+ from transformers.modeling_utils import Conv1D, PreTrainedModel
12
+ from transformers.utils import logging
13
+ from .config_codesage import CodeSageConfig
14
+ from transformers.modeling_outputs import (
15
+ BaseModelOutputWithPooling,
16
+ MaskedLMOutput,
17
+ SequenceClassifierOutput
18
+ )
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ CODESAGE_PRETRAINED_MODEL_ARCHIVE_LIST = [
23
+ "codesage/codesage-small-v2",
24
+ "codesage/codesage-base-v2",
25
+ "codesage/codesage-large-v2",
26
+ # See all CodeSage models at https://huggingface.co/models?filter=codesage
27
+ ]
28
+
29
+
30
+ class CodeSageAttention(nn.Module):
31
+ def __init__(self, config):
32
+ super().__init__()
33
+
34
+ self.hidden_size = config.hidden_size
35
+ self.num_heads = config.num_attention_heads
36
+ self.head_dim = config.hidden_size // self.num_heads
37
+ if self.head_dim * self.num_heads != config.hidden_size:
38
+ raise ValueError(
39
+ f"`hidden_size` must be divisible by num_heads "
40
+ f"(got `hidden_size`: {config.hidden_size} and `num_heads`: {self.num_heads})."
41
+ )
42
+
43
+ self.c_attn = Conv1D(3 * self.hidden_size, self.hidden_size)
44
+ self.c_proj = Conv1D(self.hidden_size, self.hidden_size)
45
+
46
+ self.attention_dropout = nn.Dropout(config.attention_dropout_prob)
47
+ self.residual_dropout = nn.Dropout(config.residual_dropout_prob)
48
+
49
+ def attn(self, query, key, value, attention_mask=None, head_mask=None):
50
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
51
+ attn_weights = attn_weights / math.sqrt(self.head_dim)
52
+ if attention_mask is not None:
53
+ attn_weights = attn_weights + attention_mask
54
+
55
+ attn_weights = nn.Softmax(dim=-1)(attn_weights)
56
+ attn_weights = self.attention_dropout(attn_weights)
57
+ if head_mask is not None:
58
+ attn_weights = attn_weights * head_mask
59
+
60
+ attn_output = torch.matmul(attn_weights, value)
61
+ return attn_output, attn_weights
62
+
63
+ def split_heads(self, tensor, num_heads, attn_head_size):
64
+ """
65
+ Splits hidden_size dim into attn_head_size and num_heads
66
+ """
67
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
68
+ tensor = tensor.view(*new_shape)
69
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
70
+
71
+ def merge_heads(self, tensor, num_heads, attn_head_size):
72
+ """
73
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
74
+ """
75
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
76
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
77
+ return tensor.view(new_shape)
78
+
79
+ def forward(
80
+ self,
81
+ hidden_states,
82
+ attention_mask=None,
83
+ head_mask=None,
84
+ output_attentions=False,
85
+ ):
86
+ query, key, value = self.c_attn(hidden_states).split(self.hidden_size, dim=2)
87
+ query = self.split_heads(query, self.num_heads, self.head_dim)
88
+ key = self.split_heads(key, self.num_heads, self.head_dim)
89
+ value = self.split_heads(value, self.num_heads, self.head_dim)
90
+
91
+ attn_output, attn_weights = self.attn(query, key, value, attention_mask, head_mask)
92
+
93
+ attn_output = self.merge_heads(attn_output, self.num_heads, self.head_dim)
94
+ attn_output = self.c_proj(attn_output)
95
+ attn_output = self.residual_dropout(attn_output)
96
+
97
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
98
+ return outputs # a, present, (attentions)
99
+
100
+
101
+ class CodeSageMLP(nn.Module):
102
+ def __init__(self, intermediate_size, config):
103
+ super().__init__()
104
+
105
+ self.c_fc = Conv1D(intermediate_size, config.hidden_size)
106
+ self.act = ACT2FN[config.activation_function]
107
+ self.c_proj = Conv1D(config.hidden_size, intermediate_size)
108
+ self.dropout = nn.Dropout(config.residual_dropout_prob)
109
+
110
+ def forward(self, hidden_states):
111
+ hidden_states = self.c_fc(hidden_states)
112
+ hidden_states = self.act(hidden_states)
113
+ hidden_states = self.c_proj(hidden_states)
114
+ hidden_states = self.dropout(hidden_states)
115
+ return hidden_states
116
+
117
+
118
+ class CodeSageBlock(nn.Module):
119
+ def __init__(self, config):
120
+ super().__init__()
121
+ hidden_size = config.hidden_size
122
+ inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
123
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
124
+ self.attn = CodeSageAttention(config)
125
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
126
+ self.mlp = CodeSageMLP(inner_dim, config)
127
+
128
+ def forward(
129
+ self,
130
+ hidden_states,
131
+ attention_mask=None,
132
+ head_mask=None,
133
+ output_attentions=False,
134
+ ):
135
+ residual = hidden_states
136
+ hidden_states = self.ln_1(hidden_states)
137
+ attn_outputs = self.attn(
138
+ hidden_states,
139
+ attention_mask=attention_mask,
140
+ head_mask=head_mask,
141
+ output_attentions=output_attentions
142
+ )
143
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
144
+ outputs = attn_outputs[1:]
145
+ hidden_states = attn_output + residual
146
+
147
+ residual = hidden_states
148
+ hidden_states = self.ln_2(hidden_states)
149
+ feed_forward_hidden_states = self.mlp(hidden_states)
150
+ hidden_states = residual + feed_forward_hidden_states
151
+
152
+ outputs = (hidden_states,) + outputs[1:]
153
+ return outputs # hidden_states, present, (attentions)
154
+
155
+
156
+ class CodeSagePreTrainedModel(PreTrainedModel):
157
+ config_class = CodeSageConfig
158
+ base_model_prefix = "transformer"
159
+
160
+ def _init_weights(self, module):
161
+ """Initialize the weights."""
162
+ if isinstance(module, (nn.Linear, Conv1D)):
163
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
164
+ if module.bias is not None:
165
+ module.bias.data.zero_()
166
+ elif isinstance(module, nn.Embedding):
167
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
168
+ if module.padding_idx is not None:
169
+ module.weight.data[module.padding_idx].zero_()
170
+ elif isinstance(module, nn.LayerNorm):
171
+ module.bias.data.zero_()
172
+ module.weight.data.fill_(1.0)
173
+
174
+
175
+ class CodeSageModel(CodeSagePreTrainedModel):
176
+ def __init__(self, config):
177
+ super().__init__(config)
178
+
179
+ self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
180
+ self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
181
+
182
+ self.drop = nn.Dropout(config.embedding_dropout_prob)
183
+ self.h = nn.ModuleList([CodeSageBlock(config) for _ in range(config.num_hidden_layers)])
184
+ self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
185
+
186
+ self.init_weights()
187
+
188
+ def get_input_embeddings(self):
189
+ return self.wte
190
+
191
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
192
+ self.wte = new_embeddings
193
+
194
+ def forward(
195
+ self,
196
+ input_ids=None,
197
+ attention_mask=None,
198
+ position_ids=None,
199
+ head_mask=None,
200
+ inputs_embeds=None,
201
+ output_attentions=None,
202
+ output_hidden_states=None,
203
+ return_dict=None
204
+ ):
205
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
206
+ output_hidden_states = (
207
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
208
+ )
209
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
210
+
211
+ if input_ids is not None and inputs_embeds is not None:
212
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
213
+ if input_ids is not None:
214
+ input_shape = input_ids.size()
215
+ elif inputs_embeds is not None:
216
+ input_shape = inputs_embeds.size()[:-1]
217
+ else:
218
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
219
+
220
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
221
+ if position_ids is None:
222
+ position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=device)
223
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
224
+ else:
225
+ position_ids = position_ids.view(-1, input_shape[-1])
226
+
227
+ extended_attention_mask = None
228
+ if attention_mask is not None:
229
+ assert attention_mask.dim() == 2
230
+ extended_attention_mask = attention_mask[:, None, None, :]
231
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
232
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
233
+
234
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
235
+ if inputs_embeds is None:
236
+ inputs_embeds = self.wte(input_ids)
237
+
238
+ position_embeds = self.wpe(position_ids)
239
+ hidden_states = inputs_embeds + position_embeds
240
+
241
+ hidden_states = self.drop(hidden_states)
242
+ output_shape = input_shape + (hidden_states.size(-1),)
243
+
244
+ all_self_attentions = () if output_attentions else None
245
+ all_hidden_states = () if output_hidden_states else None
246
+ for i, block in enumerate(self.h):
247
+ if output_hidden_states:
248
+ all_hidden_states = all_hidden_states + (hidden_states,)
249
+
250
+ outputs = block(
251
+ hidden_states,
252
+ attention_mask=extended_attention_mask,
253
+ head_mask=head_mask[i],
254
+ output_attentions=output_attentions,
255
+ )
256
+
257
+ hidden_states = outputs[0]
258
+ if output_attentions:
259
+ all_self_attentions = all_self_attentions + (outputs[1],)
260
+
261
+ hidden_states = self.ln_f(hidden_states)
262
+ hidden_states = hidden_states.view(*output_shape)
263
+ if output_hidden_states:
264
+ all_hidden_states = all_hidden_states + (hidden_states,)
265
+
266
+ pooled_output = None # max-pooled output
267
+ if attention_mask is not None:
268
+ pooled_output = (hidden_states * attention_mask[:, :, None]).sum(1) / attention_mask.sum(1)[:, None]
269
+
270
+ if not return_dict:
271
+ return tuple(
272
+ v
273
+ for v in [hidden_states, pooled_output, all_hidden_states, all_self_attentions]
274
+ if v is not None
275
+ )
276
+
277
+ return BaseModelOutputWithPooling(
278
+ last_hidden_state=hidden_states,
279
+ pooler_output=pooled_output,
280
+ hidden_states=all_hidden_states,
281
+ attentions=all_self_attentions
282
+ )
283
+
284
+
285
+ class CodeSageForMaskedLM(CodeSagePreTrainedModel):
286
+ _tied_weights_keys = ["lm_head.weight"]
287
+
288
+ def __init__(self, config):
289
+ super().__init__(config)
290
+ self.transformer = CodeSageModel(config)
291
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
292
+
293
+ self.init_weights()
294
+
295
+ def get_output_embeddings(self):
296
+ return self.lm_head
297
+
298
+ def set_output_embeddings(self, new_embeddings):
299
+ self.lm_head = new_embeddings
300
+
301
+ def forward(
302
+ self,
303
+ input_ids=None,
304
+ attention_mask=None,
305
+ position_ids=None,
306
+ head_mask=None,
307
+ inputs_embeds=None,
308
+ labels=None,
309
+ output_attentions=None,
310
+ output_hidden_states=None,
311
+ return_dict=None
312
+ ):
313
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
314
+
315
+ transformer_outputs = self.transformer(
316
+ input_ids,
317
+ attention_mask=attention_mask,
318
+ position_ids=position_ids,
319
+ head_mask=head_mask,
320
+ inputs_embeds=inputs_embeds,
321
+ output_attentions=output_attentions,
322
+ output_hidden_states=output_hidden_states,
323
+ return_dict=return_dict
324
+ )
325
+ hidden_states = transformer_outputs[0]
326
+ lm_logits = self.lm_head(hidden_states)
327
+
328
+ masked_lm_loss = None
329
+ if labels is not None:
330
+ loss_fct = CrossEntropyLoss()
331
+ masked_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
332
+
333
+ if not return_dict:
334
+ output = (lm_logits,) + transformer_outputs[1:]
335
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
336
+
337
+ return MaskedLMOutput(
338
+ loss=masked_lm_loss,
339
+ logits=lm_logits,
340
+ hidden_states=transformer_outputs.hidden_states,
341
+ attentions=transformer_outputs.attentions,
342
+ )
343
+
344
+
345
+ class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
346
+
347
+ def __init__(self, config):
348
+ super().__init__(config)
349
+ self.num_labels = config.num_labels
350
+ self.config = config
351
+
352
+ self.transformer = CodeSageModel(config)
353
+ classifier_dropout = (
354
+ config.classifier_dropout
355
+ if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None
356
+ else config.residual_dropout_prob
357
+ )
358
+ self.dropout = nn.Dropout(classifier_dropout)
359
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
360
+
361
+ # Initialize weights and apply final processing
362
+ self.post_init()
363
+
364
+ def forward(
365
+ self,
366
+ input_ids=None,
367
+ attention_mask=None,
368
+ position_ids=None,
369
+ head_mask=None,
370
+ inputs_embeds=None,
371
+ labels=None,
372
+ output_attentions=None,
373
+ output_hidden_states=None,
374
+ return_dict=None,
375
+ ):
376
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
377
+ assert attention_mask is not None, "attention_mask is needed to perform max-pooling"
378
+
379
+ outputs = self.transformer(
380
+ input_ids,
381
+ attention_mask=attention_mask,
382
+ position_ids=position_ids,
383
+ head_mask=head_mask,
384
+ inputs_embeds=inputs_embeds,
385
+ output_attentions=output_attentions,
386
+ output_hidden_states=output_hidden_states,
387
+ return_dict=return_dict,
388
+ )
389
+
390
+ pooled_output = outputs[1]
391
+ pooled_output = self.dropout(pooled_output)
392
+ logits = self.classifier(pooled_output)
393
+
394
+ loss = None
395
+ if labels is not None:
396
+ if self.config.problem_type is None:
397
+ if self.num_labels == 1:
398
+ self.config.problem_type = "regression"
399
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
400
+ self.config.problem_type = "single_label_classification"
401
+ else:
402
+ self.config.problem_type = "multi_label_classification"
403
+
404
+ if self.config.problem_type == "regression":
405
+ loss_fct = MSELoss()
406
+ if self.num_labels == 1:
407
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
408
+ else:
409
+ loss = loss_fct(logits, labels)
410
+ elif self.config.problem_type == "single_label_classification":
411
+ loss_fct = CrossEntropyLoss()
412
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
413
+ elif self.config.problem_type == "multi_label_classification":
414
+ loss_fct = BCEWithLogitsLoss()
415
+ loss = loss_fct(logits, labels)
416
+
417
+ if not return_dict:
418
+ output = (logits,) + outputs[2:]
419
+ return ((loss,) + output) if loss is not None else output
420
+
421
+ return SequenceClassifierOutput(
422
+ loss=loss,
423
+ logits=logits,
424
+ hidden_states=outputs.hidden_states,
425
+ attentions=outputs.attentions,
426
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78a7ed76ffa5ca4e145100610e5541201ca0f3ecc75f1b73433303ae9348c77c
3
+ size 2627013817
special_tokens_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<filename>",
9
+ "<gh_stars>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<empty_output>",
18
+ "<commit_before>",
19
+ "<commit_msg>",
20
+ "<commit_after>",
21
+ "<reponame>"
22
+ ],
23
+ "bos_token": "<|endoftext|>",
24
+ "eos_token": "<|endoftext|>",
25
+ "mask_token": "<mask>",
26
+ "pad_token": "<pad>",
27
+ "unk_token": "<|endoftext|>"
28
+ }
tokenization_codesage.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from functools import lru_cache
4
+ from typing import List, Optional, Tuple
5
+
6
+ import regex as re
7
+
8
+ from transformers import AddedToken, PreTrainedTokenizer
9
+ import logging
10
+
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {
15
+ "vocab_file": "vocab.json",
16
+ "merges_file": "merges.txt",
17
+ }
18
+
19
+ # Taken from
20
+ # https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
21
+ @lru_cache()
22
+ def bytes_to_unicode():
23
+ """
24
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
25
+ characters the bpe code barfs on.
26
+
27
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
28
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
29
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
30
+ tables between utf-8 bytes and unicode strings.
31
+ """
32
+ bs = (
33
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
34
+ )
35
+ cs = bs[:]
36
+ n = 0
37
+ for b in range(2**8):
38
+ if b not in bs:
39
+ bs.append(b)
40
+ cs.append(2**8 + n)
41
+ n += 1
42
+ cs = [chr(n) for n in cs]
43
+ return dict(zip(bs, cs))
44
+
45
+
46
+ def get_pairs(word):
47
+ """
48
+ Return set of symbol pairs in a word.
49
+
50
+ Word is represented as tuple of symbols (symbols being variable-length strings).
51
+ """
52
+ pairs = set()
53
+ prev_char = word[0]
54
+ for char in word[1:]:
55
+ pairs.add((prev_char, char))
56
+ prev_char = char
57
+ return pairs
58
+
59
+
60
+ class CodeSageTokenizer(PreTrainedTokenizer):
61
+ """A thin wrapper of the starcoder tokenizer.
62
+ See HuggingFace for further documentation on general tokenizer methods.
63
+ """
64
+
65
+ vocab_files_names = VOCAB_FILES_NAMES
66
+ model_input_names = ["input_ids", "attention_mask"]
67
+
68
+ def __init__(
69
+ self,
70
+ vocab_file,
71
+ merges_file,
72
+ errors="replace",
73
+ unk_token="<|endoftext|>",
74
+ bos_token="<|endoftext|>",
75
+ eos_token="<|endoftext|>",
76
+ pad_token=None,
77
+ add_prefix_space=False,
78
+ add_bos_token=False,
79
+ add_eos_token=True,
80
+ **kwargs,
81
+ ):
82
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
83
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
84
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
85
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
86
+
87
+ self.add_bos_token = add_bos_token
88
+ self.add_eos_token = add_eos_token
89
+
90
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
91
+ self.encoder = json.load(vocab_handle)
92
+ self.decoder = {v: k for k, v in self.encoder.items()}
93
+ self.errors = errors # how to handle errors in decoding
94
+ self.byte_encoder = bytes_to_unicode()
95
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
96
+ with open(merges_file, encoding="utf-8") as merges_handle:
97
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
98
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
99
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
100
+ self.cache = {}
101
+ self.add_prefix_space = add_prefix_space
102
+
103
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
104
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
105
+
106
+ super().__init__(
107
+ errors=errors,
108
+ unk_token=unk_token,
109
+ bos_token=bos_token,
110
+ eos_token=eos_token,
111
+ pad_token=pad_token,
112
+ add_prefix_space=add_prefix_space,
113
+ add_bos_token=add_bos_token,
114
+ add_eos_token=add_eos_token,
115
+ **kwargs,
116
+ )
117
+
118
+ @property
119
+ def vocab_size(self):
120
+ return len(self.encoder)
121
+
122
+ def get_vocab(self):
123
+ return dict(self.encoder, **self.added_tokens_encoder)
124
+
125
+ def bpe(self, token):
126
+ if token in self.cache:
127
+ return self.cache[token]
128
+ word = tuple(token)
129
+ pairs = get_pairs(word)
130
+
131
+ if not pairs:
132
+ return token
133
+
134
+ while True:
135
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
136
+ if bigram not in self.bpe_ranks:
137
+ break
138
+ first, second = bigram
139
+ new_word = []
140
+ i = 0
141
+ while i < len(word):
142
+ try:
143
+ j = word.index(first, i)
144
+ except ValueError:
145
+ new_word.extend(word[i:])
146
+ break
147
+ else:
148
+ new_word.extend(word[i:j])
149
+ i = j
150
+
151
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
152
+ new_word.append(first + second)
153
+ i += 2
154
+ else:
155
+ new_word.append(word[i])
156
+ i += 1
157
+ new_word = tuple(new_word)
158
+ word = new_word
159
+ if len(word) == 1:
160
+ break
161
+ else:
162
+ pairs = get_pairs(word)
163
+ word = " ".join(word)
164
+ self.cache[token] = word
165
+ return word
166
+
167
+ def build_inputs_with_special_tokens(
168
+ self,
169
+ token_ids_0: List[int],
170
+ token_ids_1: Optional[List[int]] = None) -> List[int]:
171
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
172
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
173
+
174
+ output = bos_token_id + token_ids_0 + eos_token_id
175
+
176
+ if token_ids_1 is not None:
177
+ output = output + bos_token_id + token_ids_1 + eos_token_id
178
+
179
+ return output
180
+
181
+ def get_special_tokens_mask(
182
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
183
+ ) -> List[int]:
184
+ """
185
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
186
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
187
+
188
+ Args:
189
+ token_ids_0 (`List[int]`):
190
+ List of IDs.
191
+ token_ids_1 (`List[int]`, *optional*):
192
+ Optional second list of IDs for sequence pairs.
193
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
194
+ Whether or not the token list is already formatted with special tokens for the model.
195
+
196
+ Returns:
197
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
198
+ """
199
+ if already_has_special_tokens:
200
+ return super().get_special_tokens_mask(
201
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
202
+ )
203
+
204
+ if not self.add_bos_token:
205
+ return super().get_special_tokens_mask(
206
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
207
+ )
208
+
209
+ if token_ids_1 is None:
210
+ return [1] + ([0] * len(token_ids_0))
211
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
212
+
213
+ def _tokenize(self, text):
214
+ """Tokenize a string."""
215
+ bpe_tokens = []
216
+ for token in re.findall(self.pat, text):
217
+ token = "".join(
218
+ self.byte_encoder[b] for b in token.encode("utf-8")
219
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
220
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
221
+ return bpe_tokens
222
+
223
+ def _convert_token_to_id(self, token):
224
+ """Converts a token (str) in an id using the vocab."""
225
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
226
+
227
+ def _convert_id_to_token(self, index):
228
+ """Converts an index (integer) in a token (str) using the vocab."""
229
+ return self.decoder.get(index)
230
+
231
+ def convert_tokens_to_string(self, tokens):
232
+ """Converts a sequence of tokens (string) in a single string."""
233
+ text = "".join(tokens)
234
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
235
+ return text
236
+
237
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
238
+ if not os.path.isdir(save_directory):
239
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
240
+ return
241
+ vocab_file = os.path.join(
242
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
243
+ )
244
+ merge_file = os.path.join(
245
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
246
+ )
247
+
248
+ with open(vocab_file, "w", encoding="utf-8") as f:
249
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
250
+
251
+ index = 0
252
+ with open(merge_file, "w", encoding="utf-8") as writer:
253
+ writer.write("#version: 0.2\n")
254
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
255
+ if index != token_index:
256
+ logger.warning(
257
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
258
+ " Please check that the tokenizer is not corrupted!"
259
+ )
260
+ index = token_index
261
+ writer.write(" ".join(bpe_tokens) + "\n")
262
+ index += 1
263
+
264
+ return vocab_file, merge_file
265
+
266
+ def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
267
+ add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
268
+ if is_split_into_words or add_prefix_space:
269
+ text = " " + text
270
+ return (text, kwargs)
271
+
272
+ @property
273
+ def default_chat_template(self):
274
+ """
275
+ A simple chat template that ignores role information and just concatenates messages with EOS tokens.
276
+ """
277
+ return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "additional_special_tokens": [
4
+ "<|endoftext|>",
5
+ "<fim_prefix>",
6
+ "<fim_middle>",
7
+ "<fim_suffix>",
8
+ "<fim_pad>",
9
+ "<filename>",
10
+ "<gh_stars>",
11
+ "<issue_start>",
12
+ "<issue_comment>",
13
+ "<issue_closed>",
14
+ "<jupyter_start>",
15
+ "<jupyter_text>",
16
+ "<jupyter_code>",
17
+ "<jupyter_output>",
18
+ "<empty_output>",
19
+ "<commit_before>",
20
+ "<commit_msg>",
21
+ "<commit_after>",
22
+ "<reponame>"
23
+ ],
24
+ "bos_token": "<|endoftext|>",
25
+ "eos_token": "<|endoftext|>",
26
+ "add_eos_token": true,
27
+ "model_max_length": 1000000000000000019884624838656,
28
+ "unk_token": "<|endoftext|>",
29
+ "vocab_size": 49152,
30
+ "tokenizer_class": "CodeSageTokenizer",
31
+ "auto_map": {
32
+ "AutoTokenizer": ["tokenization_codesage.CodeSageTokenizer", null]
33
+ }
34
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff