Transformers
PyTorch
code
custom_code
Inference Endpoints
Dejiao Z commited on
Commit
a53aec6
1 Parent(s): d5b4bcf

remove redundant file

Browse files
.ipynb_checkpoints/config-checkpoint.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "_name_or_path": "/mnt/efs/people/dejiaoz/experiments/next_models/codesage_v2_pub/cs-small-clv7-fv1-3e05-4k18k-mlmdobf-para-homo-t003-mrl/combined_bf16_unwrapped.pt",
3
- "activation_function": "gelu_new",
4
- "architectures": [
5
- "CodeSageModel"
6
- ],
7
- "attention_dropout_prob": 0.1,
8
- "auto_map": {
9
- "AutoConfig": "config_codesage.CodeSageConfig",
10
- "AutoModel": "modeling_codesage.CodeSageModel",
11
- "AutoModelForMaskedLM": "modeling_codesage.CodeSageForMaskedLM",
12
- "AutoModelForSequenceClassification": "modeling_codesage.CodeSageForSequenceClassification"
13
- },
14
- "bos_token_id": 100257,
15
- "embedding_dropout_prob": 0.1,
16
- "eos_token_id": 100257,
17
- "hidden_size": 1024,
18
- "initializer_range": 0.02,
19
- "intermediate_size": 4096,
20
- "layer_norm_epsilon": 1e-05,
21
- "max_position_embeddings": 2048,
22
- "model_type": "codesage",
23
- "num_attention_heads": 8,
24
- "num_hidden_layers": 6,
25
- "pad_token_id": 100317,
26
- "position_embedding_type": "absolute",
27
- "residual_dropout_prob": 0.1,
28
- "torch_dtype": "bfloat16",
29
- "transformers_version": "4.26.1",
30
- "vocab_size": 49154
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/config_codesage-checkpoint.py DELETED
@@ -1,52 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
4
-
5
- from transformers.configuration_utils import PretrainedConfig
6
-
7
- CODESAGE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
8
- "codesage/codesage-small-v2": "https://huggingface.co/codesage/codesage-small-v2/resolve/main/config.json",
9
- "codesage/codesage-base-v2": "https://huggingface.co/codesage/codesage-base-v2/resolve/main/config.json",
10
- "codesage/codesage-large-v2": "https://huggingface.co/codesage/codesage-large-v2/resolve/main/config.json",
11
- }
12
-
13
-
14
- class CodeSageConfig(PretrainedConfig):
15
- model_type = "codesage"
16
-
17
- def __init__(
18
- self,
19
- vocab_size=50257,
20
- max_position_embeddings=1024,
21
- hidden_size=768,
22
- num_hidden_layers=12,
23
- num_attention_heads=12,
24
- intermediate_size=3072,
25
- activation_function="gelu_new",
26
- residual_dropout_prob=0.1,
27
- embedding_dropout_prob=0.1,
28
- attention_dropout_prob=0.1,
29
- layer_norm_epsilon=1e-5,
30
- initializer_range=0.02,
31
- position_embedding_type='absolute',
32
- bos_token_id=0,
33
- eos_token_id=0,
34
- pad_token_id=49153,
35
- **kwargs
36
- ):
37
- self.vocab_size = vocab_size
38
- self.max_position_embeddings = max_position_embeddings
39
- self.hidden_size = hidden_size
40
- self.num_hidden_layers = num_hidden_layers
41
- self.num_attention_heads = num_attention_heads
42
- self.intermediate_size = intermediate_size
43
- assert 'gelu' in activation_function
44
- self.activation_function = activation_function
45
- self.residual_dropout_prob = residual_dropout_prob
46
- self.embedding_dropout_prob = embedding_dropout_prob
47
- self.attention_dropout_prob = attention_dropout_prob
48
- self.layer_norm_epsilon = layer_norm_epsilon
49
- self.initializer_range = initializer_range
50
- self.position_embedding_type = position_embedding_type
51
-
52
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/modeling_codesage-checkpoint.py DELETED
@@ -1,426 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
4
-
5
- import math
6
- import torch
7
- import torch.utils.checkpoint
8
- from torch import nn
9
- from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
10
- from transformers.activations import ACT2FN
11
- from transformers.modeling_utils import Conv1D, PreTrainedModel
12
- from transformers.utils import logging
13
- from .config_codesage import CodeSageConfig
14
- from transformers.modeling_outputs import (
15
- BaseModelOutputWithPooling,
16
- MaskedLMOutput,
17
- SequenceClassifierOutput
18
- )
19
-
20
- logger = logging.get_logger(__name__)
21
-
22
- CODESAGE_PRETRAINED_MODEL_ARCHIVE_LIST = [
23
- "codesage/codesage-small-v2",
24
- "codesage/codesage-base-v2",
25
- "codesage/codesage-large-v2",
26
- # See all CodeSage models at https://huggingface.co/models?filter=codesage
27
- ]
28
-
29
-
30
- class CodeSageAttention(nn.Module):
31
- def __init__(self, config):
32
- super().__init__()
33
-
34
- self.hidden_size = config.hidden_size
35
- self.num_heads = config.num_attention_heads
36
- self.head_dim = config.hidden_size // self.num_heads
37
- if self.head_dim * self.num_heads != config.hidden_size:
38
- raise ValueError(
39
- f"`hidden_size` must be divisible by num_heads "
40
- f"(got `hidden_size`: {config.hidden_size} and `num_heads`: {self.num_heads})."
41
- )
42
-
43
- self.c_attn = Conv1D(3 * self.hidden_size, self.hidden_size)
44
- self.c_proj = Conv1D(self.hidden_size, self.hidden_size)
45
-
46
- self.attention_dropout = nn.Dropout(config.attention_dropout_prob)
47
- self.residual_dropout = nn.Dropout(config.residual_dropout_prob)
48
-
49
- def attn(self, query, key, value, attention_mask=None, head_mask=None):
50
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
51
- attn_weights = attn_weights / math.sqrt(self.head_dim)
52
- if attention_mask is not None:
53
- attn_weights = attn_weights + attention_mask
54
-
55
- attn_weights = nn.Softmax(dim=-1)(attn_weights)
56
- attn_weights = self.attention_dropout(attn_weights)
57
- if head_mask is not None:
58
- attn_weights = attn_weights * head_mask
59
-
60
- attn_output = torch.matmul(attn_weights, value)
61
- return attn_output, attn_weights
62
-
63
- def split_heads(self, tensor, num_heads, attn_head_size):
64
- """
65
- Splits hidden_size dim into attn_head_size and num_heads
66
- """
67
- new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
68
- tensor = tensor.view(*new_shape)
69
- return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
70
-
71
- def merge_heads(self, tensor, num_heads, attn_head_size):
72
- """
73
- Merges attn_head_size dim and num_attn_heads dim into hidden_size
74
- """
75
- tensor = tensor.permute(0, 2, 1, 3).contiguous()
76
- new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
77
- return tensor.view(new_shape)
78
-
79
- def forward(
80
- self,
81
- hidden_states,
82
- attention_mask=None,
83
- head_mask=None,
84
- output_attentions=False,
85
- ):
86
- query, key, value = self.c_attn(hidden_states).split(self.hidden_size, dim=2)
87
- query = self.split_heads(query, self.num_heads, self.head_dim)
88
- key = self.split_heads(key, self.num_heads, self.head_dim)
89
- value = self.split_heads(value, self.num_heads, self.head_dim)
90
-
91
- attn_output, attn_weights = self.attn(query, key, value, attention_mask, head_mask)
92
-
93
- attn_output = self.merge_heads(attn_output, self.num_heads, self.head_dim)
94
- attn_output = self.c_proj(attn_output)
95
- attn_output = self.residual_dropout(attn_output)
96
-
97
- outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
98
- return outputs # a, present, (attentions)
99
-
100
-
101
- class CodeSageMLP(nn.Module):
102
- def __init__(self, intermediate_size, config):
103
- super().__init__()
104
-
105
- self.c_fc = Conv1D(intermediate_size, config.hidden_size)
106
- self.act = ACT2FN[config.activation_function]
107
- self.c_proj = Conv1D(config.hidden_size, intermediate_size)
108
- self.dropout = nn.Dropout(config.residual_dropout_prob)
109
-
110
- def forward(self, hidden_states):
111
- hidden_states = self.c_fc(hidden_states)
112
- hidden_states = self.act(hidden_states)
113
- hidden_states = self.c_proj(hidden_states)
114
- hidden_states = self.dropout(hidden_states)
115
- return hidden_states
116
-
117
-
118
- class CodeSageBlock(nn.Module):
119
- def __init__(self, config):
120
- super().__init__()
121
- hidden_size = config.hidden_size
122
- inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
123
- self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
124
- self.attn = CodeSageAttention(config)
125
- self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
126
- self.mlp = CodeSageMLP(inner_dim, config)
127
-
128
- def forward(
129
- self,
130
- hidden_states,
131
- attention_mask=None,
132
- head_mask=None,
133
- output_attentions=False,
134
- ):
135
- residual = hidden_states
136
- hidden_states = self.ln_1(hidden_states)
137
- attn_outputs = self.attn(
138
- hidden_states,
139
- attention_mask=attention_mask,
140
- head_mask=head_mask,
141
- output_attentions=output_attentions
142
- )
143
- attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
144
- outputs = attn_outputs[1:]
145
- hidden_states = attn_output + residual
146
-
147
- residual = hidden_states
148
- hidden_states = self.ln_2(hidden_states)
149
- feed_forward_hidden_states = self.mlp(hidden_states)
150
- hidden_states = residual + feed_forward_hidden_states
151
-
152
- outputs = (hidden_states,) + outputs[1:]
153
- return outputs # hidden_states, present, (attentions)
154
-
155
-
156
- class CodeSagePreTrainedModel(PreTrainedModel):
157
- config_class = CodeSageConfig
158
- base_model_prefix = "transformer"
159
-
160
- def _init_weights(self, module):
161
- """Initialize the weights."""
162
- if isinstance(module, (nn.Linear, Conv1D)):
163
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
164
- if module.bias is not None:
165
- module.bias.data.zero_()
166
- elif isinstance(module, nn.Embedding):
167
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
168
- if module.padding_idx is not None:
169
- module.weight.data[module.padding_idx].zero_()
170
- elif isinstance(module, nn.LayerNorm):
171
- module.bias.data.zero_()
172
- module.weight.data.fill_(1.0)
173
-
174
-
175
- class CodeSageModel(CodeSagePreTrainedModel):
176
- def __init__(self, config):
177
- super().__init__(config)
178
-
179
- self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
180
- self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
181
-
182
- self.drop = nn.Dropout(config.embedding_dropout_prob)
183
- self.h = nn.ModuleList([CodeSageBlock(config) for _ in range(config.num_hidden_layers)])
184
- self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
185
-
186
- self.init_weights()
187
-
188
- def get_input_embeddings(self):
189
- return self.wte
190
-
191
- def set_input_embeddings(self, new_embeddings: torch.Tensor):
192
- self.wte = new_embeddings
193
-
194
- def forward(
195
- self,
196
- input_ids=None,
197
- attention_mask=None,
198
- position_ids=None,
199
- head_mask=None,
200
- inputs_embeds=None,
201
- output_attentions=None,
202
- output_hidden_states=None,
203
- return_dict=None
204
- ):
205
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
206
- output_hidden_states = (
207
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
208
- )
209
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
210
-
211
- if input_ids is not None and inputs_embeds is not None:
212
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
213
- if input_ids is not None:
214
- input_shape = input_ids.size()
215
- elif inputs_embeds is not None:
216
- input_shape = inputs_embeds.size()[:-1]
217
- else:
218
- raise ValueError("You have to specify either input_ids or inputs_embeds")
219
-
220
- device = input_ids.device if input_ids is not None else inputs_embeds.device
221
- if position_ids is None:
222
- position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=device)
223
- position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
224
- else:
225
- position_ids = position_ids.view(-1, input_shape[-1])
226
-
227
- extended_attention_mask = None
228
- if attention_mask is not None:
229
- assert attention_mask.dim() == 2
230
- extended_attention_mask = attention_mask[:, None, None, :]
231
- extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
232
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
233
-
234
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
235
- if inputs_embeds is None:
236
- inputs_embeds = self.wte(input_ids)
237
-
238
- position_embeds = self.wpe(position_ids)
239
- hidden_states = inputs_embeds + position_embeds
240
-
241
- hidden_states = self.drop(hidden_states)
242
- output_shape = input_shape + (hidden_states.size(-1),)
243
-
244
- all_self_attentions = () if output_attentions else None
245
- all_hidden_states = () if output_hidden_states else None
246
- for i, block in enumerate(self.h):
247
- if output_hidden_states:
248
- all_hidden_states = all_hidden_states + (hidden_states,)
249
-
250
- outputs = block(
251
- hidden_states,
252
- attention_mask=extended_attention_mask,
253
- head_mask=head_mask[i],
254
- output_attentions=output_attentions,
255
- )
256
-
257
- hidden_states = outputs[0]
258
- if output_attentions:
259
- all_self_attentions = all_self_attentions + (outputs[1],)
260
-
261
- hidden_states = self.ln_f(hidden_states)
262
- hidden_states = hidden_states.view(*output_shape)
263
- if output_hidden_states:
264
- all_hidden_states = all_hidden_states + (hidden_states,)
265
-
266
- pooled_output = None # max-pooled output
267
- if attention_mask is not None:
268
- pooled_output = (hidden_states * attention_mask[:, :, None]).sum(1) / attention_mask.sum(1)[:, None]
269
-
270
- if not return_dict:
271
- return tuple(
272
- v
273
- for v in [hidden_states, pooled_output, all_hidden_states, all_self_attentions]
274
- if v is not None
275
- )
276
-
277
- return BaseModelOutputWithPooling(
278
- last_hidden_state=hidden_states,
279
- pooler_output=pooled_output,
280
- hidden_states=all_hidden_states,
281
- attentions=all_self_attentions
282
- )
283
-
284
-
285
- class CodeSageForMaskedLM(CodeSagePreTrainedModel):
286
- _tied_weights_keys = ["lm_head.weight"]
287
-
288
- def __init__(self, config):
289
- super().__init__(config)
290
- self.transformer = CodeSageModel(config)
291
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
292
-
293
- self.init_weights()
294
-
295
- def get_output_embeddings(self):
296
- return self.lm_head
297
-
298
- def set_output_embeddings(self, new_embeddings):
299
- self.lm_head = new_embeddings
300
-
301
- def forward(
302
- self,
303
- input_ids=None,
304
- attention_mask=None,
305
- position_ids=None,
306
- head_mask=None,
307
- inputs_embeds=None,
308
- labels=None,
309
- output_attentions=None,
310
- output_hidden_states=None,
311
- return_dict=None
312
- ):
313
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
314
-
315
- transformer_outputs = self.transformer(
316
- input_ids,
317
- attention_mask=attention_mask,
318
- position_ids=position_ids,
319
- head_mask=head_mask,
320
- inputs_embeds=inputs_embeds,
321
- output_attentions=output_attentions,
322
- output_hidden_states=output_hidden_states,
323
- return_dict=return_dict
324
- )
325
- hidden_states = transformer_outputs[0]
326
- lm_logits = self.lm_head(hidden_states)
327
-
328
- masked_lm_loss = None
329
- if labels is not None:
330
- loss_fct = CrossEntropyLoss()
331
- masked_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
332
-
333
- if not return_dict:
334
- output = (lm_logits,) + transformer_outputs[1:]
335
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
336
-
337
- return MaskedLMOutput(
338
- loss=masked_lm_loss,
339
- logits=lm_logits,
340
- hidden_states=transformer_outputs.hidden_states,
341
- attentions=transformer_outputs.attentions,
342
- )
343
-
344
-
345
- class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
346
-
347
- def __init__(self, config):
348
- super().__init__(config)
349
- self.num_labels = config.num_labels
350
- self.config = config
351
-
352
- self.transformer = CodeSageModel(config)
353
- classifier_dropout = (
354
- config.classifier_dropout
355
- if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None
356
- else config.residual_dropout_prob
357
- )
358
- self.dropout = nn.Dropout(classifier_dropout)
359
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
360
-
361
- # Initialize weights and apply final processing
362
- self.post_init()
363
-
364
- def forward(
365
- self,
366
- input_ids=None,
367
- attention_mask=None,
368
- position_ids=None,
369
- head_mask=None,
370
- inputs_embeds=None,
371
- labels=None,
372
- output_attentions=None,
373
- output_hidden_states=None,
374
- return_dict=None,
375
- ):
376
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
377
- assert attention_mask is not None, "attention_mask is needed to perform max-pooling"
378
-
379
- outputs = self.transformer(
380
- input_ids,
381
- attention_mask=attention_mask,
382
- position_ids=position_ids,
383
- head_mask=head_mask,
384
- inputs_embeds=inputs_embeds,
385
- output_attentions=output_attentions,
386
- output_hidden_states=output_hidden_states,
387
- return_dict=return_dict,
388
- )
389
-
390
- pooled_output = outputs[1]
391
- pooled_output = self.dropout(pooled_output)
392
- logits = self.classifier(pooled_output)
393
-
394
- loss = None
395
- if labels is not None:
396
- if self.config.problem_type is None:
397
- if self.num_labels == 1:
398
- self.config.problem_type = "regression"
399
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
400
- self.config.problem_type = "single_label_classification"
401
- else:
402
- self.config.problem_type = "multi_label_classification"
403
-
404
- if self.config.problem_type == "regression":
405
- loss_fct = MSELoss()
406
- if self.num_labels == 1:
407
- loss = loss_fct(logits.squeeze(), labels.squeeze())
408
- else:
409
- loss = loss_fct(logits, labels)
410
- elif self.config.problem_type == "single_label_classification":
411
- loss_fct = CrossEntropyLoss()
412
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
413
- elif self.config.problem_type == "multi_label_classification":
414
- loss_fct = BCEWithLogitsLoss()
415
- loss = loss_fct(logits, labels)
416
-
417
- if not return_dict:
418
- output = (logits,) + outputs[2:]
419
- return ((loss,) + output) if loss is not None else output
420
-
421
- return SequenceClassifierOutput(
422
- loss=loss,
423
- logits=logits,
424
- hidden_states=outputs.hidden_states,
425
- attentions=outputs.attentions,
426
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.ipynb_checkpoints/tokenization_codesage-checkpoint.py DELETED
@@ -1,277 +0,0 @@
1
- import json
2
- import os
3
- from functools import lru_cache
4
- from typing import List, Optional, Tuple
5
-
6
- import regex as re
7
-
8
- from transformers import AddedToken, PreTrainedTokenizer
9
- import logging
10
-
11
-
12
- logger = logging.getLogger(__name__)
13
-
14
- VOCAB_FILES_NAMES = {
15
- "vocab_file": "vocab.json",
16
- "merges_file": "merges.txt",
17
- }
18
-
19
- # Taken from
20
- # https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
21
- @lru_cache()
22
- def bytes_to_unicode():
23
- """
24
- Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
25
- characters the bpe code barfs on.
26
-
27
- The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
28
- if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
29
- decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
30
- tables between utf-8 bytes and unicode strings.
31
- """
32
- bs = (
33
- list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
34
- )
35
- cs = bs[:]
36
- n = 0
37
- for b in range(2**8):
38
- if b not in bs:
39
- bs.append(b)
40
- cs.append(2**8 + n)
41
- n += 1
42
- cs = [chr(n) for n in cs]
43
- return dict(zip(bs, cs))
44
-
45
-
46
- def get_pairs(word):
47
- """
48
- Return set of symbol pairs in a word.
49
-
50
- Word is represented as tuple of symbols (symbols being variable-length strings).
51
- """
52
- pairs = set()
53
- prev_char = word[0]
54
- for char in word[1:]:
55
- pairs.add((prev_char, char))
56
- prev_char = char
57
- return pairs
58
-
59
-
60
- class CodeSageTokenizer(PreTrainedTokenizer):
61
- """A thin wrapper of the starcoder tokenizer.
62
- See HuggingFace for further documentation on general tokenizer methods.
63
- """
64
-
65
- vocab_files_names = VOCAB_FILES_NAMES
66
- model_input_names = ["input_ids", "attention_mask"]
67
-
68
- def __init__(
69
- self,
70
- vocab_file,
71
- merges_file,
72
- errors="replace",
73
- unk_token="<|endoftext|>",
74
- bos_token="<|endoftext|>",
75
- eos_token="<|endoftext|>",
76
- pad_token=None,
77
- add_prefix_space=False,
78
- add_bos_token=False,
79
- add_eos_token=True,
80
- **kwargs,
81
- ):
82
- bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
83
- eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
84
- unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
85
- pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
86
-
87
- self.add_bos_token = add_bos_token
88
- self.add_eos_token = add_eos_token
89
-
90
- with open(vocab_file, encoding="utf-8") as vocab_handle:
91
- self.encoder = json.load(vocab_handle)
92
- self.decoder = {v: k for k, v in self.encoder.items()}
93
- self.errors = errors # how to handle errors in decoding
94
- self.byte_encoder = bytes_to_unicode()
95
- self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
96
- with open(merges_file, encoding="utf-8") as merges_handle:
97
- bpe_merges = merges_handle.read().split("\n")[1:-1]
98
- bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
99
- self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
100
- self.cache = {}
101
- self.add_prefix_space = add_prefix_space
102
-
103
- # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
104
- self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
105
-
106
- super().__init__(
107
- errors=errors,
108
- unk_token=unk_token,
109
- bos_token=bos_token,
110
- eos_token=eos_token,
111
- pad_token=pad_token,
112
- add_prefix_space=add_prefix_space,
113
- add_bos_token=add_bos_token,
114
- add_eos_token=add_eos_token,
115
- **kwargs,
116
- )
117
-
118
- @property
119
- def vocab_size(self):
120
- return len(self.encoder)
121
-
122
- def get_vocab(self):
123
- return dict(self.encoder, **self.added_tokens_encoder)
124
-
125
- def bpe(self, token):
126
- if token in self.cache:
127
- return self.cache[token]
128
- word = tuple(token)
129
- pairs = get_pairs(word)
130
-
131
- if not pairs:
132
- return token
133
-
134
- while True:
135
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
136
- if bigram not in self.bpe_ranks:
137
- break
138
- first, second = bigram
139
- new_word = []
140
- i = 0
141
- while i < len(word):
142
- try:
143
- j = word.index(first, i)
144
- except ValueError:
145
- new_word.extend(word[i:])
146
- break
147
- else:
148
- new_word.extend(word[i:j])
149
- i = j
150
-
151
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
152
- new_word.append(first + second)
153
- i += 2
154
- else:
155
- new_word.append(word[i])
156
- i += 1
157
- new_word = tuple(new_word)
158
- word = new_word
159
- if len(word) == 1:
160
- break
161
- else:
162
- pairs = get_pairs(word)
163
- word = " ".join(word)
164
- self.cache[token] = word
165
- return word
166
-
167
- def build_inputs_with_special_tokens(
168
- self,
169
- token_ids_0: List[int],
170
- token_ids_1: Optional[List[int]] = None) -> List[int]:
171
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
172
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
173
-
174
- output = bos_token_id + token_ids_0 + eos_token_id
175
-
176
- if token_ids_1 is not None:
177
- output = output + bos_token_id + token_ids_1 + eos_token_id
178
-
179
- return output
180
-
181
- def get_special_tokens_mask(
182
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
183
- ) -> List[int]:
184
- """
185
- Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
186
- special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
187
-
188
- Args:
189
- token_ids_0 (`List[int]`):
190
- List of IDs.
191
- token_ids_1 (`List[int]`, *optional*):
192
- Optional second list of IDs for sequence pairs.
193
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
194
- Whether or not the token list is already formatted with special tokens for the model.
195
-
196
- Returns:
197
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
198
- """
199
- if already_has_special_tokens:
200
- return super().get_special_tokens_mask(
201
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
202
- )
203
-
204
- if not self.add_bos_token:
205
- return super().get_special_tokens_mask(
206
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
207
- )
208
-
209
- if token_ids_1 is None:
210
- return [1] + ([0] * len(token_ids_0))
211
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
212
-
213
- def _tokenize(self, text):
214
- """Tokenize a string."""
215
- bpe_tokens = []
216
- for token in re.findall(self.pat, text):
217
- token = "".join(
218
- self.byte_encoder[b] for b in token.encode("utf-8")
219
- ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
220
- bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
221
- return bpe_tokens
222
-
223
- def _convert_token_to_id(self, token):
224
- """Converts a token (str) in an id using the vocab."""
225
- return self.encoder.get(token, self.encoder.get(self.unk_token))
226
-
227
- def _convert_id_to_token(self, index):
228
- """Converts an index (integer) in a token (str) using the vocab."""
229
- return self.decoder.get(index)
230
-
231
- def convert_tokens_to_string(self, tokens):
232
- """Converts a sequence of tokens (string) in a single string."""
233
- text = "".join(tokens)
234
- text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
235
- return text
236
-
237
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
238
- if not os.path.isdir(save_directory):
239
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
240
- return
241
- vocab_file = os.path.join(
242
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
243
- )
244
- merge_file = os.path.join(
245
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
246
- )
247
-
248
- with open(vocab_file, "w", encoding="utf-8") as f:
249
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
250
-
251
- index = 0
252
- with open(merge_file, "w", encoding="utf-8") as writer:
253
- writer.write("#version: 0.2\n")
254
- for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
255
- if index != token_index:
256
- logger.warning(
257
- f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
258
- " Please check that the tokenizer is not corrupted!"
259
- )
260
- index = token_index
261
- writer.write(" ".join(bpe_tokens) + "\n")
262
- index += 1
263
-
264
- return vocab_file, merge_file
265
-
266
- def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
267
- add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
268
- if is_split_into_words or add_prefix_space:
269
- text = " " + text
270
- return (text, kwargs)
271
-
272
- @property
273
- def default_chat_template(self):
274
- """
275
- A simple chat template that ignores role information and just concatenates messages with EOS tokens.
276
- """
277
- return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"