codeslord's picture
Lunar Lander V2 PPO trained model
1aa0ed4
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd4b068040>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd4b0680d0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd4b068160>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd4b0681f0>",
"_build": "<function ActorCriticPolicy._build at 0x7fcd4b068280>",
"forward": "<function ActorCriticPolicy.forward at 0x7fcd4b068310>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd4b0683a0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd4b068430>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fcd4b0684c0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd4b068550>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd4b0685e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd4b068670>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fcd4b062720>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1674987572187461583,
"learning_rate": 0.001,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZJDT4oL1g/jFVFvVMh2b5wWyM+W5TwvQAAAAAAAAAA5tiUvSnNE7yKduy7HiNYPD5Xgz0HCjm9AACAPwAAgD8z0mm9Kdgauk/oNjkpFks0PpequiA0VLgAAIA/AACAP81M47uFo5W5t52uO4H0ijg1h/G5puNiugAAgD8AAIA/jXKDPaSAY7mmq7863Exots6LObvDyVm1AACAPwAAgD+mhA4+1y0ZP1uV+L2Woaq+i0UlPiIbsb0AAAAAAAAAAM2Br7y1S9w+JomgPPq8nL7anQ+9KuW5OwAAAAAAAAAAzTq6vFJYtblSSse677I3NTdRfbuDZ+s5AACAPwAAgD+awzi8kXS+PTuNoj2/1XC+WwlEPRVXtL0AAAAAAAAAABoaCr3XA2O5HTenNpHApjF76Wu7RBfFtQAAgD8AAIA/M1PsOvagR7qFIfm2RkyFMVivaLv72Q82AACAPwAAgD/mf/M9WoYPP141oL6/kIO+iRvsvW+4rr0AAAAAAAAAAJoROLvsOae5kETrut82W7YLZSm6wNwJOgAAgD8AAIA/ZhrHO6RgXLlRFjI7rY16NvAYdbreP1W6AACAPwAAgD/6wxi+uWIjP90CTD2SKYC+ddugvZKXsj0AAAAAAAAAAJp0Yb32PDa6m/TXuivaSbYwK0C6ytj4OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw5ygTQ5LYkCUhpRSlIwBbJRN6AOMAXSUR0Cw8uuuNgjRdX2UKGgGaAloD0MI+b8jKlS1YkCUhpRSlGgVTegDaBZHQLDzewUQCjl1fZQoaAZoCWgPQwiLbr2mB9pkQJSGlFKUaBVN6ANoFkdAsPN/NGEwnHV9lChoBmgJaA9DCDquRnYlvWZAlIaUUpRoFU3oA2gWR0Cw9Hcv/R3NdX2UKGgGaAloD0MIxm6fVeZ/ZUCUhpRSlGgVTegDaBZHQLD0rxM36yl1fZQoaAZoCWgPQwjHDb+bboNkQJSGlFKUaBVN6ANoFkdAsPTgDifg8HV9lChoBmgJaA9DCKUyxRwEtmZAlIaUUpRoFU3oA2gWR0Cw9cvQrtmddX2UKGgGaAloD0MI/kRlw5qBYkCUhpRSlGgVTegDaBZHQLD4cL5hz/91fZQoaAZoCWgPQwhihPBo4+xiQJSGlFKUaBVN6ANoFkdAsPjbxWkrPXV9lChoBmgJaA9DCHUiwVQzqmZAlIaUUpRoFU3oA2gWR0Cw+Z7WiDdydX2UKGgGaAloD0MIezL/6Js+ZUCUhpRSlGgVTegDaBZHQLD57MQmNR51fZQoaAZoCWgPQwiKkSVzLP1nQJSGlFKUaBVN6ANoFkdAsPqAiC8OC3V9lChoBmgJaA9DCFsnLscrzDtAlIaUUpRoFUuTaBZHQLD6o1twaR91fZQoaAZoCWgPQwhuMT83NMhjQJSGlFKUaBVN6ANoFkdAsPqj+bVjJHV9lChoBmgJaA9DCLlsdM7PzGFAlIaUUpRoFU3oA2gWR0Cw+qerQw9JdX2UKGgGaAloD0MIxty1hPyOY0CUhpRSlGgVTegDaBZHQLD7Oj+aScN1fZQoaAZoCWgPQwjQ0aqWdOhgQJSGlFKUaBVN6ANoFkdAsQC7gHeJpHV9lChoBmgJaA9DCG4YBcHjimNAlIaUUpRoFU3oA2gWR0CxAdPp+tr9dX2UKGgGaAloD0MI09nJ4Cg7ZUCUhpRSlGgVTegDaBZHQLECaeANG3F1fZQoaAZoCWgPQwjEP2zpUYZlQJSGlFKUaBVN6ANoFkdAsQJuL/CIlHV9lChoBmgJaA9DCED2evfH3WZAlIaUUpRoFU3oA2gWR0CxA3ozJp35dX2UKGgGaAloD0MIL4oe+BjtX0CUhpRSlGgVTegDaBZHQLEDsghKUV11fZQoaAZoCWgPQwh39SoyOnBjQJSGlFKUaBVN6ANoFkdAsQPip6yB1HV9lChoBmgJaA9DCLEzhc5rkmVAlIaUUpRoFU3oA2gWR0CxBMtGNJe3dX2UKGgGaAloD0MINbQB2IC4LkCUhpRSlGgVS2ZoFkdAsQUwL5RCQnV9lChoBmgJaA9DCHZTymslrFVAlIaUUpRoFUu6aBZHQLEGJSApazN1fZQoaAZoCWgPQwgSiULLullmQJSGlFKUaBVN6ANoFkdAsQfMadc0L3V9lChoBmgJaA9DCNIb7iO3SWZAlIaUUpRoFU3oA2gWR0CxCJiTINmUdX2UKGgGaAloD0MIMjz2s9gFZ0CUhpRSlGgVTegDaBZHQLEI6u1WsBB1fZQoaAZoCWgPQwipZ0Eob09gQJSGlFKUaBVN6ANoFkdAsSDvkwN9Y3V9lChoBmgJaA9DCPc8f9qop2RAlIaUUpRoFU3oA2gWR0CxIRIYekpJdX2UKGgGaAloD0MIuqEpO/0rX0CUhpRSlGgVTegDaBZHQLEhEp9ZzPt1fZQoaAZoCWgPQwhselBQigBlQJSGlFKUaBVN6ANoFkdAsSEWzLOiWXV9lChoBmgJaA9DCFgCKbHrSWFAlIaUUpRoFU3oA2gWR0CxIa0WZZ0TdX2UKGgGaAloD0MIndUCe0zMXkCUhpRSlGgVTegDaBZHQLEm4t1IRRN1fZQoaAZoCWgPQwjHaB1VTQtgQJSGlFKUaBVN6ANoFkdAsSfjBi1Aq3V9lChoBmgJaA9DCCPA6V28E2NAlIaUUpRoFU3oA2gWR0CxKG9v0h/zdX2UKGgGaAloD0MIOdOE7afzZECUhpRSlGgVTegDaBZHQLEoc2xptaZ1fZQoaAZoCWgPQwi+pZwvdrpkQJSGlFKUaBVN6ANoFkdAsSlVMK1G9nV9lChoBmgJaA9DCHf1KjK6s2JAlIaUUpRoFU3oA2gWR0CxKpJsTFl1dX2UKGgGaAloD0MIfEYiNAKNZ0CUhpRSlGgVTegDaBZHQLEq7gnMMZx1fZQoaAZoCWgPQwiJDKt4I8VlQJSGlFKUaBVN6ANoFkdAsSvahakhzXV9lChoBmgJaA9DCExSmWIOLlxAlIaUUpRoFU3oA2gWR0CxLUHw5NoKdX2UKGgGaAloD0MIPgXAeAb1OECUhpRSlGgVS3RoFkdAsS1ZLzwtrnV9lChoBmgJaA9DCN6Th4XaTmhAlIaUUpRoFU3oA2gWR0CxLeWoegctdX2UKGgGaAloD0MIR3alZSToYkCUhpRSlGgVTegDaBZHQLEuJx+az/p1fZQoaAZoCWgPQwjZd0XwvytnQJSGlFKUaBVN6ANoFkdAsS6touf29XV9lChoBmgJaA9DCAhzu5f7w2dAlIaUUpRoFU3oA2gWR0CxLsvWDpTudX2UKGgGaAloD0MItr3dkhzyaUCUhpRSlGgVTegDaBZHQLEuzH4Glhx1fZQoaAZoCWgPQwjVd35Rgm1kQJSGlFKUaBVN6ANoFkdAsS7Pv9cbBHV9lChoBmgJaA9DCBIR/kVQNGVAlIaUUpRoFU3oA2gWR0CxL1CIpH7QdX2UKGgGaAloD0MI8tO4N787QUCUhpRSlGgVS+ZoFkdAsTGGC8OCoXV9lChoBmgJaA9DCL/xtWeW4mNAlIaUUpRoFU3oA2gWR0CxNEbYK6WgdX2UKGgGaAloD0MILA/SU2RrYUCUhpRSlGgVTegDaBZHQLE1QuzhP0t1fZQoaAZoCWgPQwghrweTYh5lQJSGlFKUaBVN6ANoFkdAsTXR8Z1mrnV9lChoBmgJaA9DCDm3CfdKDGdAlIaUUpRoFU3oA2gWR0CxNdY0VJtjdX2UKGgGaAloD0MIBTOmYI1+ZkCUhpRSlGgVTegDaBZHQLE2wd6cAip1fZQoaAZoCWgPQwjXE10X/pdkQJSGlFKUaBVN6ANoFkdAsTgwDB/I83V9lChoBmgJaA9DCOlhaHVy5WdAlIaUUpRoFU3oA2gWR0CxOJ+1a4c4dX2UKGgGaAloD0MIDFhyFQuZZkCUhpRSlGgVTegDaBZHQLE7IK7ZnL91fZQoaAZoCWgPQwi+EkiJXQpkQJSGlFKUaBVN6ANoFkdAsTs6PuG9H3V9lChoBmgJaA9DCCEhyhc02mNAlIaUUpRoFU3oA2gWR0CxO80zbeuWdX2UKGgGaAloD0MIv/G1ZxY1ZECUhpRSlGgVTegDaBZHQLE8ENXHR1J1fZQoaAZoCWgPQwgqOpLL/xtjQJSGlFKUaBVN6ANoFkdAsTyJCrtE5XV9lChoBmgJaA9DCMeEmEuqu19AlIaUUpRoFU3oA2gWR0CxPKcaCL/CdX2UKGgGaAloD0MI19r7VBUxZ0CUhpRSlGgVTegDaBZHQLE8qjfek591fZQoaAZoCWgPQwhCmNu9XOlnQJSGlFKUaBVN6ANoFkdAsVTBnbqQinV9lChoBmgJaA9DCDP60XDKeGFAlIaUUpRoFU3oA2gWR0CxVuijUNKAdX2UKGgGaAloD0MIM1LvqRzeZECUhpRSlGgVTegDaBZHQLFZo+De0ol1fZQoaAZoCWgPQwhlbVM8LgNnQJSGlFKUaBVN6ANoFkdAsVqeY2Kl6HV9lChoBmgJaA9DCNbJGYq70mVAlIaUUpRoFU3oA2gWR0CxWzbGm1pkdX2UKGgGaAloD0MIRKZ8CCpaZ0CUhpRSlGgVTegDaBZHQLFbOxhUipx1fZQoaAZoCWgPQwiT407pYO9oQJSGlFKUaBVN6ANoFkdAsVw7q9oN/nV9lChoBmgJaA9DCKmDvB7MLWJAlIaUUpRoFU3oA2gWR0CxXdOB19v1dX2UKGgGaAloD0MIzgAXZMu4ZUCUhpRSlGgVTegDaBZHQLFeS7el9Bt1fZQoaAZoCWgPQwgmHHqLh61oQJSGlFKUaBVN6ANoFkdAsWEPHQyAQXV9lChoBmgJaA9DCEmgwaZOXmZAlIaUUpRoFU3oA2gWR0CxYSt3fQ8fdX2UKGgGaAloD0MIeei7W9k2YECUhpRSlGgVTegDaBZHQLFh2j7yhBZ1fZQoaAZoCWgPQwjcEU4L3lRnQJSGlFKUaBVN6ANoFkdAsWIm37UG3XV9lChoBmgJaA9DCEzBGmdTsWJAlIaUUpRoFU3oA2gWR0CxYrvkFOfvdX2UKGgGaAloD0MILPGAsin7YkCUhpRSlGgVTegDaBZHQLFi3XbM5fd1fZQoaAZoCWgPQwg6evzeJipiQJSGlFKUaBVN6ANoFkdAsWLhUfgaWHV9lChoBmgJaA9DCIM1zqajhWlAlIaUUpRoFU3oA2gWR0CxY2327FsIdX2UKGgGaAloD0MI1SMNbmu7ZUCUhpRSlGgVTegDaBZHQLFloEIw/Ph1fZQoaAZoCWgPQwj2evfHe00qQJSGlFKUaBVLy2gWR0CxZe/5xiobdX2UKGgGaAloD0MITFXa4hqSZkCUhpRSlGgVTegDaBZHQLFoG6XjU/h1fZQoaAZoCWgPQwg0Zacf1EpkQJSGlFKUaBVN6ANoFkdAsWj7H6uW8nV9lChoBmgJaA9DCNi5aTNOuWJAlIaUUpRoFU3oA2gWR0CxaYMZP2wndX2UKGgGaAloD0MI4KEo0KfkZUCUhpRSlGgVTegDaBZHQLFphpi7TUl1fZQoaAZoCWgPQwgHQUerWkFoQJSGlFKUaBVN6ANoFkdAsWpk1He7+XV9lChoBmgJaA9DCOYklL4QZFRAlIaUUpRoFUu7aBZHQLFrf9srNGF1fZQoaAZoCWgPQwg0orQ3+DJjQJSGlFKUaBVN6ANoFkdAsWu7VBlcyHV9lChoBmgJaA9DCAH6ff/myWVAlIaUUpRoFU3oA2gWR0CxbB/SQYDUdX2UKGgGaAloD0MIhh+cT527aUCUhpRSlGgVTegDaBZHQLFup0g8r7R1fZQoaAZoCWgPQwiHxD2WvmJhQJSGlFKUaBVN6ANoFkdAsW7DWuoxYnV9lChoBmgJaA9DCGzQl97+9GFAlIaUUpRoFU3oA2gWR0Cxb3FpoK2KdX2UKGgGaAloD0MI7dgIxGtwYkCUhpRSlGgVTegDaBZHQLFvu2RJVbR1fZQoaAZoCWgPQwg9CtejcBtnQJSGlFKUaBVN6ANoFkdAsXBSHbh3q3V9lChoBmgJaA9DCHLe/8cJvWRAlIaUUpRoFU3oA2gWR0CxcHbMottidX2UKGgGaAloD0MIkWRW73AWZkCUhpRSlGgVTegDaBZHQLFwetEofCB1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"n_steps": 2048,
"gamma": 0.999,
"gae_lambda": 0.99,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}