File size: 2,008 Bytes
c787130 9408468 c787130 9408468 2c06fcf 681114a 9408468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
---
license: mit
language:
- en
---
# deepnight-research/lil-c3po
<div style="display: flex; justify-content: center; align-items: center;">
<img src="./lil-c3po.jpg" style="width: 100%; max-width: 350px; height: auto;"/></div>
## Model Details:
lil-c3po is an open-source large language model (LLM) resulting from the linear merge of two distinct fine-tuned Mistral-7B models, internally referred to as c3-1 and c3-2. These models, developed in-house, bring together unique characteristics to enhance performance and utility.
## Model Architecture:
lil-c3po inherits its architecture from the combined c3-1 and c3-2 models, incorporating features such as Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. This fusion aims to capitalize on the strengths of both models for improved language understanding and generation.
## Training Details:
- The first model, internally referred to as c3-1, is a 7B parameter Large Language Model fine-tuned on the Intel Gaudi 2 processor. It utilizes the Direct Performance Optimization (DPO) method, specifically tailored for Intel architecture, and is designed to excel in various language-related tasks.
- The second model, denoted as c3-2, is an instruct fine-tuned version of Mistral-7B. Its architecture features improvements in instruct fine-tuning, contributing to enhanced language understanding in instructional contexts.
## License:
lil-c3po is released under the MIT license, fostering open-source collaboration and innovation.
## Intended Use:
This merged model is suitable for a broad range of language-related tasks, inheriting the capabilities of the fine-tuned c3-1 and c3-2 models. Users interested in language tasks can leverage lil-c3po's capabilities.
## Out-of-Scope Uses:
While lil-c3po is versatile, it is important to note that, in most cases, fine-tuning may be necessary for specific tasks. Additionally, the model should not be used to intentionally create hostile or alienating environments for people. |