Upload 3 files
Browse files
kraken_model/configuration_kraken.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class KrakenConfig(PretrainedConfig):
|
4 |
+
model_type = "kraken"
|
5 |
+
|
6 |
+
def __init__(self, config_dict=None, **kwargs):
|
7 |
+
super().__init__(**kwargs)
|
8 |
+
self.config_dict = config_dict or {}
|
kraken_model/modeling_kraken.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import PreTrainedModel, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, TextClassificationPipeline
|
3 |
+
from configuration_kraken import KrakenConfig
|
4 |
+
import tokenizer_template_switch
|
5 |
+
|
6 |
+
class KrakenForCausalLM(PreTrainedModel):
|
7 |
+
config_class = KrakenConfig
|
8 |
+
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
self.tokenizers = {key: AutoTokenizer.from_pretrained(name, device_map="auto") for key, name in config.config_dict['tokenizers'].items()}
|
12 |
+
self.models = self.load_expert_models(config.config_dict['models'], config.config_dict['quantization'])
|
13 |
+
self.router_model = AutoModelForSequenceClassification.from_pretrained(config.config_dict['router'], trust_remote_code=True,device_map="auto")
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.config_dict['router'], trust_remote_code=True,device_map="auto")
|
15 |
+
self.router = TextClassificationPipeline(model=self.router_model, tokenizer=self.tokenizer)
|
16 |
+
self.models_indices = config.config_dict['class_indices']
|
17 |
+
|
18 |
+
def load_expert_models(self, models_dict, quantization_dict):
|
19 |
+
models = {}
|
20 |
+
for key, name in models_dict.items():
|
21 |
+
quantization = quantization_dict.get(key)
|
22 |
+
if quantization == "8bit":
|
23 |
+
models[key] = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto", load_in_8bit=True, torch_dtype="auto")
|
24 |
+
elif quantization == "4bit":
|
25 |
+
models[key] = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto", load_in_4bit=True, torch_dtype="auto")
|
26 |
+
elif quantization == "awq":
|
27 |
+
models[key] = self.load_awq_model(name)
|
28 |
+
else:
|
29 |
+
models[key] = AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto", torch_dtype="auto")
|
30 |
+
return models
|
31 |
+
|
32 |
+
def load_awq_model(self, name):
|
33 |
+
return AutoModelForCausalLM.from_pretrained(name, trust_remote_code=True, device_map="auto")
|
34 |
+
|
35 |
+
def tokenize_inputs(self, text, model_key):
|
36 |
+
return self.tokenizers[model_key](text, return_tensors="pt")
|
37 |
+
|
38 |
+
def determine_model(self, text):
|
39 |
+
prediction = self.router(text)[0]["label"]
|
40 |
+
model_decision_index = self.models_indices[prediction]
|
41 |
+
model_keys = ['expert1', 'expert2', 'expert3', 'expert4','expert5']
|
42 |
+
return model_keys[model_decision_index]
|
43 |
+
|
44 |
+
def expert_tokenizer(self, text):
|
45 |
+
model_key = self.determine_model(text)
|
46 |
+
return self.tokenizers[model_key]
|
47 |
+
|
48 |
+
|
49 |
+
def generate(self, input_ids, **generate_kwargs):
|
50 |
+
# Tokenize the input_ids
|
51 |
+
text = self.tokenizer.batch_decode(input_ids, skip_special_tokens=False)[0]
|
52 |
+
|
53 |
+
msgs = tokenizer_template_switch.recover_chat_messages(text, self.tokenizer)
|
54 |
+
if msgs and msgs[0]['role'] == 'system' and msgs[0]['content']=='<|im_start|>system':
|
55 |
+
# Delete the first element
|
56 |
+
msgs.pop(0)
|
57 |
+
# Check if the last element has the role 'assistant'
|
58 |
+
if msgs and msgs[-1]['role'] == 'assistant':
|
59 |
+
# Delete the last element
|
60 |
+
msgs.pop()
|
61 |
+
|
62 |
+
# Determine the model key using the existing routing logic
|
63 |
+
model_key = self.determine_model(text)
|
64 |
+
# Show the routing result
|
65 |
+
print(f"Choosing {model_key} ..")
|
66 |
+
# Retrieve the model from the dictionary
|
67 |
+
model = self.models[model_key]
|
68 |
+
|
69 |
+
mod_txt = self.tokenizers[model_key].apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
|
70 |
+
current_device = input_ids.device if isinstance(input_ids, torch.Tensor) else 'cpu'
|
71 |
+
|
72 |
+
# Tokenize accordingly to the best model
|
73 |
+
|
74 |
+
tok = self.tokenizers[model_key](mod_txt, return_tensors="pt")
|
75 |
+
tok_input_ids = tok.input_ids.to(current_device)
|
76 |
+
tok_attention_mask = tok.attention_mask.to(current_device)
|
77 |
+
|
78 |
+
# Generate text using the retrieved model
|
79 |
+
return model.generate(tok_input_ids, attention_mask=tok_attention_mask, **generate_kwargs)
|
80 |
+
|
81 |
+
|
82 |
+
|
kraken_model/tokenizer_template_switch.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
|
4 |
+
def extract_separators(template):
|
5 |
+
"""
|
6 |
+
Extracts separators used in the tokenization template.
|
7 |
+
"""
|
8 |
+
# Adjust the regex to correctly match the specific pattern between '{{' and '+ message["content"] +'
|
9 |
+
pattern = r"\{\{\s*([^{}]+?)\s*\+ message\['content'\]"
|
10 |
+
matches = re.findall(pattern, template)
|
11 |
+
# Clean up any extra spaces and return the matches
|
12 |
+
separators = [match.strip() for match in matches]
|
13 |
+
|
14 |
+
if any("message['role']" in element for element in separators):
|
15 |
+
roles = ["system", "user", "assistant"]
|
16 |
+
separators_ = []
|
17 |
+
for role in roles:
|
18 |
+
separators_.append(separators[0].replace(" + message['role'] + ", role).replace("'",""))
|
19 |
+
return separators_
|
20 |
+
|
21 |
+
return separators
|
22 |
+
|
23 |
+
def detect_eos_token(jinja_template, tokenizer):
|
24 |
+
if "<|im_end|>" in jinja_template:
|
25 |
+
return "<|im_end|>"
|
26 |
+
if "</s>" in jinja_template:
|
27 |
+
return "</s>"
|
28 |
+
if "eos_token" in jinja_template:
|
29 |
+
return tokenizer.eos_token
|
30 |
+
else:
|
31 |
+
return "<|endoftext|>"
|
32 |
+
|
33 |
+
def recover_messages(formatted_message, separators, eos_token):
|
34 |
+
"""
|
35 |
+
Recovers the original messages from the formatted message string.
|
36 |
+
"""
|
37 |
+
# Split the formatted message using the end-of-string token
|
38 |
+
split_messages = formatted_message.split(eos_token)
|
39 |
+
|
40 |
+
# Remove the last empty string if it exists due to a trailing separator
|
41 |
+
if split_messages and split_messages[-1].strip() == '':
|
42 |
+
split_messages.pop()
|
43 |
+
|
44 |
+
# Prepare the list to hold the recovered messages
|
45 |
+
recovered_messages = []
|
46 |
+
|
47 |
+
# Define roles after the first message, alternating between "user" and "assistant"
|
48 |
+
alternate_roles = ["user", "assistant"]
|
49 |
+
|
50 |
+
# Iterate over the split messages
|
51 |
+
for index, message_content in enumerate(split_messages):
|
52 |
+
# Determine the role, starting with "system" for the first message
|
53 |
+
# then alternating between "user" and "assistant" for subsequent messages
|
54 |
+
if index == 0:
|
55 |
+
role = "system"
|
56 |
+
else:
|
57 |
+
role = alternate_roles[(index - 1) % 2]
|
58 |
+
|
59 |
+
# Clean the message content by removing leading/trailing whitespace and separators
|
60 |
+
clean_content = message_content.strip()
|
61 |
+
for separator in separators:
|
62 |
+
clean_content = clean_content.replace(separator.strip("'"), '', 1).strip()
|
63 |
+
|
64 |
+
# Append the cleaned message with its role to the list
|
65 |
+
recovered_messages.append({"role": role, "content": clean_content})
|
66 |
+
|
67 |
+
return recovered_messages
|
68 |
+
|
69 |
+
def recover_chat_messages(tokenized_chat, tokenizer):
|
70 |
+
"""
|
71 |
+
Given a tokenized_chat string and a tokenizer, returns the list of message dictionaries.
|
72 |
+
"""
|
73 |
+
jinja_template = tokenizer.chat_template
|
74 |
+
separators = extract_separators(jinja_template)
|
75 |
+
eos_token = eos_token = detect_eos_token(jinja_template, tokenizer)
|
76 |
+
recovered_messages = recover_messages(tokenized_chat, separators, eos_token)
|
77 |
+
return recovered_messages
|
78 |
+
|
79 |
+
# Example usage
|
80 |
+
if __name__ == "__main__":
|
81 |
+
checkpoint = "Qwen/Qwen1.5-0.5B"
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
83 |
+
|
84 |
+
messages = [
|
85 |
+
{
|
86 |
+
"role": "system",
|
87 |
+
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
88 |
+
},
|
89 |
+
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
90 |
+
]
|
91 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=False)
|
92 |
+
print(tokenized_chat)
|
93 |
+
|
94 |
+
recovered_messages = recover_chat_messages(tokenized_chat, tokenizer)
|
95 |
+
print(recovered_messages)
|