File size: 4,885 Bytes
3e843c0
 
 
 
 
4b21382
 
 
3e843c0
 
4b21382
 
 
 
 
 
 
 
 
 
 
3e843c0
4b21382
3e843c0
4b21382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e843c0
4b21382
 
 
3e843c0
4b21382
 
 
3e843c0
4b21382
 
 
 
 
 
 
 
 
 
 
 
3e843c0
4b21382
 
 
 
 
3e843c0
4b21382
 
 
 
 
 
 
3e843c0
4b21382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e843c0
 
810440c
3e843c0
4b21382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e843c0
4b21382
3e843c0
4b21382
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
license: apache-2.0
base_model: Qwen/Qwen2-0.5B
tags:
- generated_from_trainer
model-index:
- name: 0.5b out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: Qwen/Qwen2-0.5B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

# load_in_4bit: true

chat_template: chatml
datasets:
  - path: /workspace/datasets/dolphin201-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/SystemChat_sharegpt.jsonl
    type: sharegpt
    conversation: chatml
  # - path: /workspace/datasets/SystemChat_multilingual_sharegpt.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/SystemChat-2.0-Arabic/SystemChatArabic_sharegpt.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/dolphin-coder-translate-sharegpt2.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/dolphin-coder-codegen-sharegpt2.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
  #   type: sharegpt
    # conversation: chatml
  - path: /workspace/datasets/not_samantha_norefusals.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/Orca-Math-resort-unfiltered.jsonl
    type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/agent_instruct_react_unfiltered.jsonl
  #   type: sharegpt  
  #   conversation: chatml
  # - path: /workspace/datasets/toolbench_instruct_j1s1_3k_unfiltered.jsonl
  #   type: sharegpt  
  #   conversation: chatml
  # - path: /workspace/datasets/toolbench_negative_unfiltered.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/toolbench_react_10p_unfiltered.jsonl
  #   type: sharegpt
  #   conversation: chatml
  # - path: /workspace/datasets/toolbench_tflan_cot_30p_unfiltered.jsonl
  #   type: sharegpt
  #   conversation: chatml
  - path: /workspace/datasets/openhermes200k_unfiltered.jsonl
    type: sharegpt 
    conversation: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.03
output_dir: 0.5b out

sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true

# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_dropout: 0.05
# lora_target_modules:
#   - q_proj
#   - k_proj
#   - v_proj
#   - o_proj
#   - gate_proj
#   - up_proj
#   - down_proj

wandb_project: 2.9.3-qwen-2.9.3-qwen2-0.5b
# wandb_entity: oaaic
# wandb_watch:
# wandb_name:
# wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: constant
learning_rate: 1e-4
# max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
warmup_steps: 10
# evals_per_epoch: 2
saves_per_epoch: 2
save_total_limit: 2
weight_decay: 0.1
special_tokens:
  eos_token: <|im_end|>


```

</details><br>

# 0.5b out

This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9948

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 10
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0145        | 1.0111 | 933  | 1.0237          |
| 0.9716        | 2.0116 | 1867 | 0.9972          |
| 0.8939        | 2.9743 | 2766 | 0.9948          |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1