File size: 30,590 Bytes
2267ec1 b90039c 2267ec1 b90039c 2267ec1 b90039c 2267ec1 b90039c 2267ec1 b90039c 2267ec1 b90039c 2267ec1 b90039c 2267ec1 1087e82 2267ec1 b90039c 2267ec1 b90039c 2267ec1 b90039c 2267ec1 b7c799c b90039c 592de42 b7c799c 2267ec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
import open3d as o3d
from typing import Tuple, List
from scipy.spatial.distance import cdist
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
import matplotlib.pyplot as plt
from kornia.feature import LoFTR
import kornia as K
import kornia.feature as KF
import torch
import copy
import matplotlib
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=6, pad=0.5):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
figsize = (size * n, size * 3 / 4) if size is not None else None
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
def plot_lines(lines, line_colors="orange", point_colors="cyan", ps=4, lw=2, indices=(0, 1)):
"""Plot lines and endpoints for existing images.
Args:
lines: list of ndarrays of size (N, 2, 2).
colors: string, or list of list of tuples (one for each keypoints).
ps: size of the keypoints as float pixels.
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
if not isinstance(line_colors, list):
line_colors = [line_colors] * len(lines)
if not isinstance(point_colors, list):
point_colors = [point_colors] * len(lines)
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines and junctions
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
for i in range(len(l)):
line = matplotlib.lines.Line2D(
(l[i, 1, 1], l[i, 0, 1]),
(l[i, 1, 0], l[i, 0, 0]),
zorder=1,
c=lc,
linewidth=lw,
)
a.add_line(line)
pts = l.reshape(-1, 2)
a.scatter(pts[:, 1], pts[:, 0], c=pc, s=ps, linewidths=0, zorder=2)
def plot_color_line_matches(lines, lw=2, indices=(0, 1)):
"""Plot line matches for existing images with multiple colors.
Args:
lines: list of ndarrays of size (N, 2, 2).
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
n_lines = len(lines[0])
cmap = plt.get_cmap("nipy_spectral", lut=n_lines)
colors = np.array([mcolors.rgb2hex(cmap(i)) for i in range(cmap.N)])
np.random.shuffle(colors)
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines
for a, l in zip(axes, lines):
for i in range(len(l)):
line = matplotlib.lines.Line2D(
(l[i, 1, 1], l[i, 0, 1]),
(l[i, 1, 0], l[i, 0, 0]),
zorder=1,
c=colors[i],
linewidth=lw,
)
a.add_line(line)
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-0.5,
edge_color+0.5),
cv2.MORPH_DILATE, np.ones((11, 11)))
line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
return uv, vertex_depth
from scipy.spatial import distance_matrix
def non_maximum_suppression(points, threshold):
if len(points) == 0:
return []
# Create a distance matrix
dist_matrix = distance_matrix(points, points)
filtered_indices = []
# Suppress points within the threshold
keep = np.ones(len(points), dtype=bool)
for i in range(len(points)):
if keep[i]:
# Suppress points that are close to the current point
keep = np.logical_and(keep, dist_matrix[i] > threshold)
keep[i] = True # Keep the current point itself
filtered_indices.append(i)
return points[keep], filtered_indices
def merge_vertices_3d_ours(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (connections, vertices_3d) in vert_edge_per_image.items():
cur_start+=len(vertices_3d)
all_3d_vertices.append(vertices_3d)
connections+=[(x+cur_start,y+cur_start) for (x,y) in connections]
connections_3d.append(connections)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
new_vertices, _ = non_maximum_suppression(all_3d_vertices, 75)
new_connections = []
return new_vertices, connections_3d
def merge_vertices_3d(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
#print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
#print (connections_3d)
new_vertices=np.array(new_vertices)
#print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k,v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k]=len(new_verts) -1
for k,v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
connected_out=list(set(connected_out))
return np.array(new_verts), connected_out
def loftr_matcher(gestalt_img_0, gestalt_img1, depth_images):
import torchvision.transforms as transforms
rgb_to_gray = transforms.Compose([
transforms.ToPILImage(), # Convert tensor to PIL image
transforms.Grayscale(num_output_channels=1), # Convert to grayscale
transforms.ToTensor() # Convert back to tensor
])
device = 'cpu'#torch.device('cuda' if torch.cuda.is_available() else 'cpu')
w, h = depth_images.size
gest_seg_0 = gestalt_img_0.resize(depth_images.size)
gest_seg_0 = gest_seg_0.convert('L')
gest_seg_0_np = np.array(gest_seg_0)
gest_seg_0_tensor = K.image_to_tensor(gest_seg_0_np, False).float().to(device)
img1 = K.geometry.resize(gest_seg_0_tensor, (int(h/4), int(w/4))) / 255
gest_seg_1 = gestalt_img1.resize(depth_images.size)
gest_seg_1 = gest_seg_1.convert('L')
gest_seg_1_np = np.array(gest_seg_1)
gest_seg_1_tensor = K.image_to_tensor(gest_seg_1_np, False).float().to(device)
img2 = K.geometry.resize(gest_seg_1_tensor, (int(h/4), int(w/4))) / 255
matcher = KF.LoFTR(pretrained="outdoor").to(device)
input_dict = {
"image0": img1,
"image1": img2,
}
# print("Input dict shape", input_dict["image0"].shape, input_dict["image1"].shape)
with torch.no_grad():
correspondences = matcher(input_dict)
# mkpts0 = correspondences["keypoints0"].cpu().numpy()
# mkpts1 = correspondences["keypoints1"].cpu().numpy()
# Fm, inliers = cv2.findFundamentalMat(mkpts0, mkpts1, cv2.USAC_MAGSAC, 0.99, 0.3, 100000)
# inliers = inliers > 0
# inliers_flat = inliers.flatten()
mkpts0 = correspondences["keypoints0"].cpu().numpy() * 4
mkpts1 = correspondences["keypoints1"].cpu().numpy() * 4
# filter out keypoints that are in [0 - W, 0.4H - H] w=1920, h=1080
heigt_th = int(0.6 * h)
filter_indices = mkpts0[:, 1] < heigt_th
mkpts0 = mkpts0[filter_indices]
mkpts1 = mkpts1[filter_indices]
return correspondences, mkpts0, mkpts1
def disk_matcher(gestalt_img_0, gestalt_img1, depth_images):
import torchvision.transforms as transforms
rgb_to_gray = transforms.Compose([
transforms.ToPILImage(), # Convert tensor to PIL image
transforms.Grayscale(num_output_channels=1), # Convert to grayscale
transforms.ToTensor() # Convert back to tensor
])
device = 'cpu'#torch.device('cuda' if torch.cuda.is_available() else 'cpu')
w, h = depth_images.size
gest_seg_0 = gestalt_img_0.resize(depth_images.size)
gest_seg_0 = gest_seg_0.convert('L')
gest_seg_0_np = np.array(gest_seg_0)
gest_seg_0_tensor = K.image_to_tensor(gest_seg_0_np, False).float().to(device)
img1 = K.geometry.resize(gest_seg_0_tensor, (int(h/4), int(w/4))) / 255
gest_seg_1 = gestalt_img1.resize(depth_images.size)
gest_seg_1 = gest_seg_1.convert('L')
gest_seg_1_np = np.array(gest_seg_1)
gest_seg_1_tensor = K.image_to_tensor(gest_seg_1_np, False).float().to(device)
img2 = K.geometry.resize(gest_seg_1_tensor, (int(h/4), int(w/4))) / 255
num_features = 8192
disk = KF.DISK.from_pretrained("depth").to(device)
hw1 = torch.tensor(img1.shape[2:], device=device)
hw2 = torch.tensor(img2.shape[2:], device=device)
lg_matcher = KF.LightGlueMatcher("disk").eval().to(device)
with torch.no_grad():
inp = torch.cat([img1, img2], dim=0)
features1, features2 = disk(inp, num_features, pad_if_not_divisible=True)
kps1, descs1 = features1.keypoints, features1.descriptors
kps2, descs2 = features2.keypoints, features2.descriptors
lafs1 = KF.laf_from_center_scale_ori(kps1[None], torch.ones(1, len(kps1), 1, 1, device=device))
lafs2 = KF.laf_from_center_scale_ori(kps2[None], torch.ones(1, len(kps2), 1, 1, device=device))
dists, idxs = lg_matcher(descs1, descs2, lafs1, lafs2, hw1=hw1, hw2=hw2)
print(f"{idxs.shape[0]} tentative matches with DISK LightGlue")
lg = KF.LightGlue("disk").to(device).eval()
image0 = {
"keypoints": features1.keypoints[None],
"descriptors": features1.descriptors[None],
"image_size": torch.tensor(img1.shape[-2:][::-1]).view(1, 2).to(device),
}
image1 = {
"keypoints": features2.keypoints[None],
"descriptors": features2.descriptors[None],
"image_size": torch.tensor(img2.shape[-2:][::-1]).view(1, 2).to(device),
}
with torch.inference_mode():
out = lg({"image0": image0, "image1": image1})
idxs = out["matches"][0]
print(f"{idxs.shape[0]} tentative matches with DISK LightGlue")
def get_matching_keypoints(kp1, kp2, idxs):
mkpts1 = kp1[idxs[:, 0]]
mkpts2 = kp2[idxs[:, 1]]
return mkpts1, mkpts2
mkpts0, mkpts1 = get_matching_keypoints(kps1, kps2, idxs)
mkpts0*=4
mkpts1*=4
return mkpts0, mkpts1
def save_image_with_keypoints(filename: str, image: np.ndarray, keypoints: np.ndarray, color: Tuple[int, int, int]) -> np.ndarray:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
for keypoint in keypoints:
pt = (int(keypoint[0]), int(keypoint[1]))
cv2.circle(image, pt, 4, color, -1)
# save as png
cv2.imwrite(filename, image)
###### added for lines detection ######
def save_image_with_lines(filename: str, image: np.ndarray, lines: np.ndarray, color: Tuple[int, int, int]) -> None:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
for line in lines:
pt1 = (int(line[0][1]), int(line[0][0]))
pt2 = (int(line[1][1]), int(line[1][0]))
cv2.line(image, pt1, pt2, color, 2)
cv2.imwrite(filename, image)
def line_matcher(gestalt_img_0, gestalt_img1, depth_images, line_th=0.1):
import torchvision.transforms as transforms
rgb_to_gray = transforms.Compose([
transforms.ToPILImage(), # Convert tensor to PIL image
transforms.Grayscale(num_output_channels=1), # Convert to grayscale
transforms.ToTensor() # Convert back to tensor
])
device = 'cpu'
w, h = depth_images.size
gest_seg_0 = gestalt_img_0.resize(depth_images.size)
gest_seg_0 = gest_seg_0.convert('L')
gest_seg_0_np = np.array(gest_seg_0)
gest_seg_0_tensor = K.image_to_tensor(gest_seg_0_np, False).float().to(device)
img1 = K.geometry.resize(gest_seg_0_tensor, (int(h/4), int(w/4))) / 255
gest_seg_1 = gestalt_img1.resize(depth_images.size)
gest_seg_1 = gest_seg_1.convert('L')
gest_seg_1_np = np.array(gest_seg_1)
gest_seg_1_tensor = K.image_to_tensor(gest_seg_1_np, False).float().to(device)
img2 = K.geometry.resize(gest_seg_1_tensor, (int(h/4), int(w/4))) / 255
sold2 = KF.SOLD2(pretrained=True, config=None)
imgs = torch.cat([img1, img2], dim=0)
with torch.inference_mode():
outputs = sold2(imgs)
print(outputs.keys())
line_seg1 = outputs["line_segments"][0]
line_seg2 = outputs["line_segments"][1]
desc1 = outputs["dense_desc"][0]
desc2 = outputs["dense_desc"][1]
# print("Input dict shape", input_dict["image0"].shape, input_dict["image1"].shape)
with torch.no_grad():
matches = sold2.match(line_seg1, line_seg2, desc1[None], desc2[None])
valid_matches = matches != -1
match_indices = matches[valid_matches]
matched_lines1 = line_seg1[valid_matches] * 4
matched_lines2 = line_seg2[match_indices] * 4
# filter out lines each single point is in [0 - W, 0.4H - H] w=1920, h=1080
heigt_th = int(0.6 * h)
# filter_indices = (matched_lines1[:, 0, 1] < heigt_th).all(1) & (matched_lines1[:, 0, 1] < heigt_th).all(1)
filter_indices = (matched_lines1[:, :, 0] < heigt_th).all(axis=1) & \
(matched_lines2[:, :, 0] < heigt_th).all(axis=1)
matched_lines1 = matched_lines1[filter_indices]
matched_lines2 = matched_lines2[filter_indices]
return matched_lines1, matched_lines2
from scipy.ndimage import center_of_mass
proximity_threshold = 225
def find_nearest_point(target_point, points, threshold):
if isinstance(target_point, torch.Tensor):
target_point = target_point.numpy()
if target_point.ndim == 2 and target_point.shape[0] == 1:
target_point = target_point[0]
if points.shape[1] != target_point.shape[0]:
raise ValueError("Shape mismatch: points and target_point must have the same number of dimensions")
distances = np.linalg.norm(points - target_point, axis=1)
min_distance_index = np.argmin(distances)
if distances[min_distance_index] < threshold:
return points[min_distance_index], min_distance_index
return None, None
def replace_with_center_of_mass(point, mask):
y, x = int(point[1]), int(point[0])
region_mask = (mask == mask[y, x])
com = center_of_mass(region_mask)
return np.array([com[1], com[0]]) # Return as (x, y)
# Gestalt color mapping
gestalt_color_mapping = {
'unclassified': [215, 62, 138],
'apex': [235, 88, 48],
'eave_end_point': [248, 130, 228],
'eave': [54, 243, 63],
'ridge': [214, 251, 248],
'rake': [13, 94, 47],
'valley': [85, 27, 65],
'unknown': [127, 127, 127]
}
def extract_segmented_area(image: np.ndarray, color: List[int]) -> np.ndarray:
lower = np.array(color) - 3 # 0.5
upper = np.array(color) + 3 # 0.5
mask = cv2.inRange(image, lower, upper)
return mask
def combine_masks(image: np.ndarray, color_mapping: dict) -> np.ndarray:
combined_mask = np.zeros(image.shape[:2], dtype=np.uint8)
for color in color_mapping.values():
mask = extract_segmented_area(image, color)
combined_mask = cv2.bitwise_or(combined_mask, mask)
return combined_mask
def filter_points_by_mask(points: np.ndarray, mask: np.ndarray) -> np.ndarray:
filtered_points = []
filtered_indices = []
for idx, point in enumerate(points):
y, x = int(point[1]), int(point[0])
if mask[y, x] > 0:
filtered_points.append(point)
filtered_indices.append(idx)
return np.array(filtered_points), filtered_indices
###### added for lines detection ########
def triangulate_points(mkpts0, mkpts1, R_0, t_0, R_1, t_1, intrinsics):
P0 = intrinsics @ np.hstack((R_0, t_0.reshape(-1, 1)))
P1 = intrinsics @ np.hstack((R_1, t_1.reshape(-1, 1)))
mkpts0_h = np.vstack((mkpts0.T, np.ones((1, mkpts0.shape[0]))))
mkpts1_h = np.vstack((mkpts1.T, np.ones((1, mkpts1.shape[0]))))
points_4D_hom = cv2.triangulatePoints(P0, P1, mkpts0_h[:2], mkpts1_h[:2])
points_3D = points_4D_hom / points_4D_hom[3]
return points_3D[:3].T
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
vert_edge_per_image = {}
for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
# LoFTR matching keypoints
if i < 2:
j = i + 1
else:
j = 0
correspondences, mkpts0, mkpts1 = loftr_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
# mkpts0, mkpts1 = disk_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
# Added by Tang: apply mask to filter out keypoints in mkpts0
gest_seg_np = np.array(gest.resize(depth.size)).astype(np.uint8)
gest_seg_0 = np.array(good_entry['gestalt'][i].resize(depth.size)).astype(np.uint8)
gest_seg_1 = np.array(good_entry['gestalt'][j].resize(depth.size)).astype(np.uint8)
combined_mask_0 = combine_masks(gest_seg_0, gestalt_color_mapping)
combined_mask_1 = combine_masks(gest_seg_1, gestalt_color_mapping)
mkpts_filtered_0, indice_0 = filter_points_by_mask(mkpts0, combined_mask_0)
mkpts_filtered_1 = mkpts1[indice_0]
# Add NMS for 2D keypoints
mkpts_filtered_0, filtered_index = non_maximum_suppression(mkpts_filtered_0, 50)
mkpts_filtered_1 = mkpts_filtered_1[filtered_index]
# save_image_with_keypoints(f'keypoints_{i}.png', np.array(good_entry['gestalt'][i]), mkpts_filtered_0, (255, 0, 0))
# save_image_with_keypoints(f'keypoints_{j}.png', np.array(good_entry['gestalt'][j]), mkpts_filtered_1, (255, 0, 0))
# Triangulation with matched keypoints
R_0 = good_entry['R'][i]
t_0 = good_entry['t'][i]
R_1 = good_entry['R'][j]
t_1 = good_entry['t'][j]
intrinsics = K
points_3d = triangulate_points(mkpts_filtered_0, mkpts_filtered_1, R_0, t_0, R_1, t_1, intrinsics)
# Line matching
line_0, line_1 = line_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 5.)
apex_points = np.array([v['xy'] for v in vertices if v['type'] == 'apex'])
eave_end_points = np.array([v['xy'] for v in vertices if v['type'] == 'eave_end_point'])
# Adjust lines based on proximity to points_3d, apex, and eave_end_points
adjusted_lines = []
connections_idx = set()
matched_lines = line_matcher(good_entry['gestalt'][i], good_entry['gestalt'][j], good_entry['depthcm'][i])
for line in matched_lines[0]:
line = line.numpy()
index_0 = -1
index_1 = -1
for k in range(2):
nearest_point_2d, index = find_nearest_point(line[k], mkpts_filtered_0, proximity_threshold)
connection = None
if nearest_point_2d is not None:
line[k] = torch.tensor(nearest_point_2d, dtype=torch.float32)
if k == 0:
index_0 = index
if k == 1:
index_1 = index
if index_0 != index_1 and index_0 != -1 and index_1 != -1:
connection = (index_0, index_1)
# append all indices of the matched lines
connections_idx.add(connection) if connection is not None else None
adjusted_lines.append(line)
connections_idx = list(connections_idx)
adjusted_lines = np.array(adjusted_lines)
# save_image_with_lines(f'line_{i}.png', np.array(good_entry['gestalt'][i]), line_0, (255, 0, 0))
# save_image_with_lines(f'line_{j}.png', np.array(good_entry['gestalt'][j]), line_1, (255, 0, 0))
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 5.)
if (len(vertices) < 2) or (len(connections) < 1):
print (f'Not enough vertices or connections in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
# continue
uv, depth_vert = get_uv_depth(vertices, depth_np)
# monodepth
# r<32 scale = colmap depth / monodepth
# monodepth /= scale
# # Assuming monodepth is provided similarly as depth
# monodepth = ?
# scale = np.mean(depth_np / monodepth)
# monodepth /= scale
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
# Get the 3D vertices
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
# vert_edge_per_image[i] = vertices, connections, vertices_3d
# ours method
vert_edge_per_image[i] = connections_idx, points_3d
all_3d_vertices, connections_3d = merge_vertices_3d_ours(vert_edge_per_image, 3.0)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(all_3d_vertices)
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=10, std_ratio=0.05)
inlier_cloud = pcd.select_by_index(ind)
filtered_vertices = np.asarray(inlier_cloud.points)
all_3d_vertices_clean = filtered_vertices
concatenated_list = []
# Iterate over each sublist in connections_3d_clean and extend the main list
for sublist in connections_3d:
concatenated_list.extend(sublist)
connections_3d_clean = concatenated_list
print (f'{len(all_3d_vertices_clean)} vertices and {len(connections_3d_clean)} connections in the 3D vertices')
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print (f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean
|