File size: 10,662 Bytes
2267ec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
from typing import Tuple, List
from scipy.spatial.distance import cdist
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
'''Get the vertices and edges from the gestalt segmentation mask of the house'''
vertices = []
connections = []
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
# Connectivity
apex_pts = []
apex_pts_idxs = []
for j, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_pts_idxs.append(j)
apex_pts = np.array(apex_pts)
# Ridge connects two apex points
for edge_class in ['eave', 'ridge', 'rake', 'valley']:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
edge_color-0.5,
edge_color+0.5),
cv2.MORPH_DILATE, np.ones((11, 11)))
line_img = np.copy(gest_seg_np) * 0
if mask.sum() > 0:
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
edges = []
for i in range(1, numLabels):
y,x = np.where(labels == i)
xleft_idx = np.argmin(x)
x_left = x[xleft_idx]
y_left = y[xleft_idx]
xright_idx = np.argmax(x)
x_right = x[xright_idx]
y_right = y[xright_idx]
edges.append((x_left, y_left, x_right, y_right))
cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
edges = np.array(edges)
if (len(apex_pts) < 2) or len(edges) <1:
continue
pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
connectivity_mask = pts_to_edges_dist <= edge_th
edge_connects = connectivity_mask.sum(axis=0)
for edge_idx, edgesum in enumerate(edge_connects):
if edgesum>=2:
connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
for a_i, a in enumerate(connected_verts):
for b in connected_verts[a_i+1:]:
connections.append((a, b))
return vertices, connections
def get_uv_depth(vertices, depth):
'''Get the depth of the vertices from the depth image'''
uv = []
for v in vertices:
uv.append(v['xy'])
uv = np.array(uv)
uv_int = uv.astype(np.int32)
H, W = depth.shape[:2]
uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
return uv, vertex_depth
def merge_vertices_3d(vert_edge_per_image, th=0.1):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
#print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
#print (connections_3d)
new_vertices=np.array(new_vertices)
#print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d):
'''Prune vertices that are not connected to any other vertex'''
connected = defaultdict(list)
for c in connections_3d:
connected[c[0]].append(c)
connected[c[1]].append(c)
new_indexes = {}
new_verts = []
connected_out = []
for k,v in connected.items():
vert = all_3d_vertices[k]
if tuple(vert) not in new_verts:
new_verts.append(tuple(vert))
new_indexes[k]=len(new_verts) -1
for k,v in connected.items():
for vv in v:
connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
connected_out=list(set(connected_out))
return np.array(new_verts), connected_out
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
vert_edge_per_image = {}
for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
good_entry['depthcm'],
good_entry['K'],
good_entry['R'],
good_entry['t']
)):
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 5.)
if (len(vertices) < 2) or (len(connections) < 1):
print (f'Not enough vertices or connections in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
uv, depth_vert = get_uv_depth(vertices, depth_np)
# Normalize the uv to the camera intrinsics
xy_local = np.ones((len(uv), 3))
xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
# Get the 3D vertices
vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
vert_edge_per_image[i] = vertices, connections, vertices_3d
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0)
all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print (f'Not enough vertices or connections in the 3D vertices')
return (good_entry['__key__'], *empty_solution())
if visualize:
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean
|