Update README.md
Browse files
README.md
CHANGED
@@ -1,30 +1,33 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
- wer
|
6 |
tags:
|
7 |
-
- audio
|
8 |
- automatic-speech-recognition
|
9 |
-
-
|
|
|
|
|
10 |
- xlsr-fine-tuning-week
|
11 |
-
|
|
|
12 |
model-index:
|
13 |
-
- name:
|
14 |
results:
|
15 |
- task:
|
16 |
-
name: Speech Recognition
|
17 |
type: automatic-speech-recognition
|
18 |
dataset:
|
19 |
-
name: Common Voice
|
20 |
type: common_voice
|
21 |
args: cs
|
22 |
metrics:
|
23 |
- name: Test WER
|
24 |
type: wer
|
25 |
-
value:
|
|
|
|
|
|
|
26 |
---
|
27 |
-
|
28 |
# Wav2Vec2-Large-XLSR-53-Czech
|
29 |
|
30 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
|
@@ -67,9 +70,9 @@ print("Reference:", test_dataset[:2]["sentence"])
|
|
67 |
```
|
68 |
|
69 |
|
70 |
-
## Evaluation
|
71 |
|
72 |
-
The model can be evaluated as follows on the Czech test data of Common Voice.
|
73 |
|
74 |
|
75 |
```python
|
@@ -79,14 +82,14 @@ from datasets import load_dataset, load_metric
|
|
79 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
80 |
import re
|
81 |
|
82 |
-
test_dataset = load_dataset("common_voice", "
|
83 |
wer = load_metric("wer")
|
84 |
|
85 |
-
processor = Wav2Vec2Processor.from_pretrained("
|
86 |
-
model = Wav2Vec2ForCTC.from_pretrained("
|
87 |
model.to("cuda")
|
88 |
|
89 |
-
chars_to_ignore_regex = '[
|
90 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
91 |
|
92 |
# Preprocessing the datasets.
|
@@ -116,11 +119,11 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
116 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
117 |
```
|
118 |
|
119 |
-
**Test Result**:
|
120 |
|
121 |
|
122 |
## Training
|
123 |
|
124 |
The Common Voice `train` and `validation` datasets were used for training
|
125 |
|
126 |
-
The script used for training can be found [here](...)
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- cs
|
4 |
+
license: apache-2.0
|
|
|
5 |
tags:
|
|
|
6 |
- automatic-speech-recognition
|
7 |
+
- common_voice
|
8 |
+
- generated_from_trainer
|
9 |
+
- robust-speech-event
|
10 |
- xlsr-fine-tuning-week
|
11 |
+
datasets:
|
12 |
+
- common_voice
|
13 |
model-index:
|
14 |
+
- name: Czech comodoro Wav2Vec2 XLSR 300M CV6.1
|
15 |
results:
|
16 |
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
type: automatic-speech-recognition
|
19 |
dataset:
|
20 |
+
name: Common Voice 6.1
|
21 |
type: common_voice
|
22 |
args: cs
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 22.20
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 5.1
|
30 |
---
|
|
|
31 |
# Wav2Vec2-Large-XLSR-53-Czech
|
32 |
|
33 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
|
|
|
70 |
```
|
71 |
|
72 |
|
73 |
+
## Evaluation
|
74 |
|
75 |
+
The model can be evaluated as follows on the Czech test data of Common Voice 6.1
|
76 |
|
77 |
|
78 |
```python
|
|
|
82 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
83 |
import re
|
84 |
|
85 |
+
test_dataset = load_dataset("common_voice", "cs", split="test")
|
86 |
wer = load_metric("wer")
|
87 |
|
88 |
+
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
|
89 |
+
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
|
90 |
model.to("cuda")
|
91 |
|
92 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…]'
|
93 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
94 |
|
95 |
# Preprocessing the datasets.
|
|
|
119 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
120 |
```
|
121 |
|
122 |
+
**Test Result**: 22.20 %
|
123 |
|
124 |
|
125 |
## Training
|
126 |
|
127 |
The Common Voice `train` and `validation` datasets were used for training
|
128 |
|
129 |
+
# TODO The script used for training can be found [here](...)
|