comodoro commited on
Commit
5e778d6
1 Parent(s): b639aa2

Updated readme

Browse files
Files changed (1) hide show
  1. README.md +105 -3
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - hsb
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_8_0
8
+ - generated_from_trainer
9
+ - robust-speech-event
10
+ - xlsr-fine-tuning-week
11
+ datasets:
12
+ - common_voice
13
+ model-index:
14
+ - name: Upper Sorbian comodoro Wav2Vec2 XLSR 300M CV8
15
+ results:
16
+ - task:
17
+ name: Automatic Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice 8
21
+ type: mozilla-foundation/common_voice_8_0
22
+ args: hsb
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 56.3
27
+ - name: Test CER
28
+ type: cer
29
+ value: 14.3
30
+ ---
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8
35
+
36
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.9643
39
+ - Wer: 0.5037
40
+ - Cer: 0.1278
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 0.0001
60
+ - train_batch_size: 16
61
+ - eval_batch_size: 8
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_steps: 200
66
+ - num_epochs: 500
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
72
+ |:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
73
+ | 4.3121 | 19.35 | 1200 | 3.2059 | 1.0 | 1.0 |
74
+ | 2.6525 | 38.71 | 2400 | 1.1324 | 0.9387 | 0.3204 |
75
+ | 1.3644 | 58.06 | 3600 | 0.8767 | 0.8099 | 0.2271 |
76
+ | 1.093 | 77.42 | 4800 | 0.8739 | 0.7603 | 0.2090 |
77
+ | 0.9546 | 96.77 | 6000 | 0.8454 | 0.6983 | 0.1882 |
78
+ | 0.8554 | 116.13 | 7200 | 0.8197 | 0.6484 | 0.1708 |
79
+ | 0.775 | 135.48 | 8400 | 0.8452 | 0.6345 | 0.1681 |
80
+ | 0.7167 | 154.84 | 9600 | 0.8551 | 0.6241 | 0.1631 |
81
+ | 0.6609 | 174.19 | 10800 | 0.8442 | 0.5821 | 0.1531 |
82
+ | 0.616 | 193.55 | 12000 | 0.8892 | 0.5864 | 0.1527 |
83
+ | 0.5815 | 212.9 | 13200 | 0.8839 | 0.5772 | 0.1503 |
84
+ | 0.55 | 232.26 | 14400 | 0.8905 | 0.5665 | 0.1436 |
85
+ | 0.5173 | 251.61 | 15600 | 0.8995 | 0.5471 | 0.1417 |
86
+ | 0.4969 | 270.97 | 16800 | 0.8633 | 0.5325 | 0.1334 |
87
+ | 0.4803 | 290.32 | 18000 | 0.9074 | 0.5253 | 0.1352 |
88
+ | 0.4596 | 309.68 | 19200 | 0.9159 | 0.5146 | 0.1294 |
89
+ | 0.4415 | 329.03 | 20400 | 0.9055 | 0.5189 | 0.1314 |
90
+ | 0.434 | 348.39 | 21600 | 0.9435 | 0.5208 | 0.1314 |
91
+ | 0.4199 | 367.74 | 22800 | 0.9199 | 0.5136 | 0.1290 |
92
+ | 0.4008 | 387.1 | 24000 | 0.9342 | 0.5174 | 0.1303 |
93
+ | 0.4051 | 406.45 | 25200 | 0.9436 | 0.5132 | 0.1292 |
94
+ | 0.3861 | 425.81 | 26400 | 0.9417 | 0.5084 | 0.1283 |
95
+ | 0.3738 | 445.16 | 27600 | 0.9573 | 0.5079 | 0.1299 |
96
+ | 0.3768 | 464.52 | 28800 | 0.9682 | 0.5062 | 0.1289 |
97
+ | 0.3647 | 483.87 | 30000 | 0.9643 | 0.5037 | 0.1278 |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.16.0.dev0
103
+ - Pytorch 1.10.1+cu102
104
+ - Datasets 1.18.3
105
+ - Tokenizers 0.11.0