Updated readme
Browse files
README.md
CHANGED
@@ -1,3 +1,105 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- hsb
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- generated_from_trainer
|
9 |
+
- robust-speech-event
|
10 |
+
- xlsr-fine-tuning-week
|
11 |
+
datasets:
|
12 |
+
- common_voice
|
13 |
+
model-index:
|
14 |
+
- name: Upper Sorbian comodoro Wav2Vec2 XLSR 300M CV8
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice 8
|
21 |
+
type: mozilla-foundation/common_voice_8_0
|
22 |
+
args: hsb
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 56.3
|
27 |
+
- name: Test CER
|
28 |
+
type: cer
|
29 |
+
value: 14.3
|
30 |
+
---
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# Upper Sorbian wav2vec2-xls-r-300m-hsb-cv8
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 0.9643
|
39 |
+
- Wer: 0.5037
|
40 |
+
- Cer: 0.1278
|
41 |
+
|
42 |
+
## Model description
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Intended uses & limitations
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training and evaluation data
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training procedure
|
55 |
+
|
56 |
+
### Training hyperparameters
|
57 |
+
|
58 |
+
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 0.0001
|
60 |
+
- train_batch_size: 16
|
61 |
+
- eval_batch_size: 8
|
62 |
+
- seed: 42
|
63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- lr_scheduler_warmup_steps: 200
|
66 |
+
- num_epochs: 500
|
67 |
+
- mixed_precision_training: Native AMP
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
72 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|
|
73 |
+
| 4.3121 | 19.35 | 1200 | 3.2059 | 1.0 | 1.0 |
|
74 |
+
| 2.6525 | 38.71 | 2400 | 1.1324 | 0.9387 | 0.3204 |
|
75 |
+
| 1.3644 | 58.06 | 3600 | 0.8767 | 0.8099 | 0.2271 |
|
76 |
+
| 1.093 | 77.42 | 4800 | 0.8739 | 0.7603 | 0.2090 |
|
77 |
+
| 0.9546 | 96.77 | 6000 | 0.8454 | 0.6983 | 0.1882 |
|
78 |
+
| 0.8554 | 116.13 | 7200 | 0.8197 | 0.6484 | 0.1708 |
|
79 |
+
| 0.775 | 135.48 | 8400 | 0.8452 | 0.6345 | 0.1681 |
|
80 |
+
| 0.7167 | 154.84 | 9600 | 0.8551 | 0.6241 | 0.1631 |
|
81 |
+
| 0.6609 | 174.19 | 10800 | 0.8442 | 0.5821 | 0.1531 |
|
82 |
+
| 0.616 | 193.55 | 12000 | 0.8892 | 0.5864 | 0.1527 |
|
83 |
+
| 0.5815 | 212.9 | 13200 | 0.8839 | 0.5772 | 0.1503 |
|
84 |
+
| 0.55 | 232.26 | 14400 | 0.8905 | 0.5665 | 0.1436 |
|
85 |
+
| 0.5173 | 251.61 | 15600 | 0.8995 | 0.5471 | 0.1417 |
|
86 |
+
| 0.4969 | 270.97 | 16800 | 0.8633 | 0.5325 | 0.1334 |
|
87 |
+
| 0.4803 | 290.32 | 18000 | 0.9074 | 0.5253 | 0.1352 |
|
88 |
+
| 0.4596 | 309.68 | 19200 | 0.9159 | 0.5146 | 0.1294 |
|
89 |
+
| 0.4415 | 329.03 | 20400 | 0.9055 | 0.5189 | 0.1314 |
|
90 |
+
| 0.434 | 348.39 | 21600 | 0.9435 | 0.5208 | 0.1314 |
|
91 |
+
| 0.4199 | 367.74 | 22800 | 0.9199 | 0.5136 | 0.1290 |
|
92 |
+
| 0.4008 | 387.1 | 24000 | 0.9342 | 0.5174 | 0.1303 |
|
93 |
+
| 0.4051 | 406.45 | 25200 | 0.9436 | 0.5132 | 0.1292 |
|
94 |
+
| 0.3861 | 425.81 | 26400 | 0.9417 | 0.5084 | 0.1283 |
|
95 |
+
| 0.3738 | 445.16 | 27600 | 0.9573 | 0.5079 | 0.1299 |
|
96 |
+
| 0.3768 | 464.52 | 28800 | 0.9682 | 0.5062 | 0.1289 |
|
97 |
+
| 0.3647 | 483.87 | 30000 | 0.9643 | 0.5037 | 0.1278 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.16.0.dev0
|
103 |
+
- Pytorch 1.10.1+cu102
|
104 |
+
- Datasets 1.18.3
|
105 |
+
- Tokenizers 0.11.0
|