lashao commited on
Commit
a37ced9
1 Parent(s): aa7fea6

Upload MiewIdNet

Browse files
Files changed (6) hide show
  1. README.md +199 -0
  2. config.json +25 -0
  3. configuration_miewid.py +21 -0
  4. heads.py +161 -0
  5. model.safetensors +3 -0
  6. modeling_miewid.py +159 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiewIdNet"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_miewid.MiewIdNetConfig",
7
+ "AutoModel": "modeling_miewid.MiewIdNet"
8
+ },
9
+ "dropout": 0.0,
10
+ "fc_dim": 512,
11
+ "k": null,
12
+ "loss_module": "softmax",
13
+ "ls_eps": 0.0,
14
+ "margin": 0.5,
15
+ "margins": null,
16
+ "model_name": "efficientnetv2_rw_m",
17
+ "model_type": "miewid",
18
+ "n_classes": 10,
19
+ "pretrained": true,
20
+ "s": 30.0,
21
+ "theta_zero": 0.785,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.2",
24
+ "use_fc": false
25
+ }
configuration_miewid.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class MiewIdNetConfig(PretrainedConfig):
5
+ model_type = "miewid"
6
+
7
+ def __init__(self, n_classes=10, model_name='efficientnet_b0', use_fc=False, fc_dim=512, dropout=0.0, loss_module='softmax', s=30.0, margin=0.50, ls_eps=0.0, theta_zero=0.785, pretrained=True, margins=None, k=None, **kwargs):
8
+ super().__init__(**kwargs)
9
+ self.n_classes = n_classes
10
+ self.model_name = model_name
11
+ self.use_fc = use_fc
12
+ self.fc_dim = fc_dim
13
+ self.dropout = dropout
14
+ self.loss_module = loss_module
15
+ self.s = s
16
+ self.margin = margin
17
+ self.ls_eps = ls_eps
18
+ self.theta_zero = theta_zero
19
+ self.pretrained = pretrained
20
+ self.margins = margins
21
+ self.k = k
heads.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import math
4
+ import torch.nn.functional as F
5
+ from torch.nn.parameter import Parameter
6
+
7
+ class ArcMarginProduct(nn.Module):
8
+ r"""Implement of large margin arc distance: :
9
+ Args:
10
+ in_features: size of each input sample
11
+ out_features: size of each output sample
12
+ s: norm of input feature
13
+ m: margin
14
+ cos(theta + m)wandb: ERROR Abnormal program exit
15
+
16
+ """
17
+ def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False, ls_eps=0.0):
18
+ super(ArcMarginProduct, self).__init__()
19
+ self.in_features = in_features
20
+ self.out_features = out_features
21
+ self.s = s
22
+ self.m = m
23
+ self.ls_eps = ls_eps # label smoothing
24
+ self.weight = Parameter(torch.FloatTensor(out_features, in_features))
25
+ nn.init.xavier_uniform_(self.weight)
26
+
27
+ self.easy_margin = easy_margin
28
+ self.cos_m = math.cos(m)
29
+ self.sin_m = math.sin(m)
30
+ self.th = math.cos(math.pi - m)
31
+ self.mm = math.sin(math.pi - m) * m
32
+
33
+ def forward(self, input, label):
34
+ # --------------------------- cos(theta) & phi(theta) ---------------------------
35
+ cosine = F.linear(F.normalize(input), F.normalize(self.weight))
36
+ sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
37
+ phi = cosine * self.cos_m - sine * self.sin_m
38
+ if self.easy_margin:
39
+ phi = torch.where(cosine > 0, phi, cosine)
40
+ else:
41
+ phi = torch.where(cosine > self.th, phi, cosine - self.mm)
42
+ # --------------------------- convert label to one-hot ---------------------------
43
+ # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda')
44
+ one_hot = torch.zeros(cosine.size(), device='cuda')
45
+ one_hot.scatter_(1, label.view(-1, 1).long(), 1)
46
+ if self.ls_eps > 0:
47
+ one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features
48
+ # -------------torch.where(out_i = {x_i if condition_i else y_i) -------------
49
+ output = (one_hot * phi) + ((1.0 - one_hot) * cosine)
50
+ output *= self.s
51
+
52
+ return output
53
+
54
+
55
+ def l2_norm(input, axis = 1):
56
+ norm = torch.norm(input, 2, axis, True)
57
+ output = torch.div(input, norm)
58
+
59
+ return output
60
+ class ElasticArcFace(nn.Module):
61
+ def __init__(self, in_features, out_features, s=64.0, m=0.50,std=0.0125,plus=False, k=None):
62
+ super(ElasticArcFace, self).__init__()
63
+ self.in_features = in_features
64
+ self.out_features = out_features
65
+ self.s = s
66
+ self.m = m
67
+ self.kernel = nn.Parameter(torch.FloatTensor(in_features, out_features))
68
+ nn.init.normal_(self.kernel, std=0.01)
69
+ self.std=std
70
+ self.plus=plus
71
+ def forward(self, embbedings, label):
72
+ embbedings = l2_norm(embbedings, axis=1)
73
+ kernel_norm = l2_norm(self.kernel, axis=0)
74
+ cos_theta = torch.mm(embbedings, kernel_norm)
75
+ cos_theta = cos_theta.clamp(-1, 1) # for numerical stability
76
+ index = torch.where(label != -1)[0]
77
+ m_hot = torch.zeros(index.size()[0], cos_theta.size()[1], device=cos_theta.device)
78
+ margin = torch.normal(mean=self.m, std=self.std, size=label[index, None].size(), device=cos_theta.device) # Fast converge .clamp(self.m-self.std, self.m+self.std)
79
+ if self.plus:
80
+ with torch.no_grad():
81
+ distmat = cos_theta[index, label.view(-1)].detach().clone()
82
+ _, idicate_cosie = torch.sort(distmat, dim=0, descending=True)
83
+ margin, _ = torch.sort(margin, dim=0)
84
+ m_hot.scatter_(1, label[index, None], margin[idicate_cosie])
85
+ else:
86
+ m_hot.scatter_(1, label[index, None], margin)
87
+ cos_theta.acos_()
88
+ cos_theta[index] += m_hot
89
+ cos_theta.cos_().mul_(self.s)
90
+ return cos_theta
91
+
92
+ ########## Subcenter Arcface with dynamic margin ##########
93
+
94
+ class ArcMarginProduct_subcenter(nn.Module):
95
+ def __init__(self, in_features, out_features, k=3):
96
+ super().__init__()
97
+ self.weight = nn.Parameter(torch.FloatTensor(out_features*k, in_features))
98
+ self.reset_parameters()
99
+ self.k = k
100
+ self.out_features = out_features
101
+
102
+ def reset_parameters(self):
103
+ stdv = 1. / math.sqrt(self.weight.size(1))
104
+ self.weight.data.uniform_(-stdv, stdv)
105
+
106
+ def forward(self, features):
107
+ cosine_all = F.linear(F.normalize(features), F.normalize(self.weight))
108
+ cosine_all = cosine_all.view(-1, self.out_features, self.k)
109
+ cosine, _ = torch.max(cosine_all, dim=2)
110
+ return cosine
111
+
112
+ class ArcFaceLossAdaptiveMargin(nn.modules.Module):
113
+ def __init__(self, margins, out_dim, s):
114
+ super().__init__()
115
+ # self.crit = nn.CrossEntropyLoss()
116
+ self.s = s
117
+ self.register_buffer('margins', torch.tensor(margins))
118
+ self.out_dim = out_dim
119
+
120
+ def forward(self, logits, labels):
121
+ #ms = []
122
+ #ms = self.margins[labels.cpu().numpy()]
123
+ ms = self.margins[labels]
124
+ cos_m = torch.cos(ms) #torch.from_numpy(np.cos(ms)).float().cuda()
125
+ sin_m = torch.sin(ms) #torch.from_numpy(np.sin(ms)).float().cuda()
126
+ th = torch.cos(math.pi - ms)#torch.from_numpy(np.cos(math.pi - ms)).float().cuda()
127
+ mm = torch.sin(math.pi - ms) * ms#torch.from_numpy(np.sin(math.pi - ms) * ms).float().cuda()
128
+ labels = F.one_hot(labels, self.out_dim).float()
129
+ cosine = logits
130
+ sine = torch.sqrt(1.0 - cosine * cosine)
131
+ phi = cosine * cos_m.view(-1,1) - sine * sin_m.view(-1,1)
132
+ phi = torch.where(cosine > th.view(-1,1), phi, cosine - mm.view(-1,1))
133
+ output = (labels * phi) + ((1.0 - labels) * cosine)
134
+ output *= self.s
135
+ return output
136
+
137
+ class ArcFaceSubCenterDynamic(nn.Module):
138
+ def __init__(
139
+ self,
140
+ embedding_dim,
141
+ output_classes,
142
+ margins,
143
+ s,
144
+ k=2,
145
+ ):
146
+ super().__init__()
147
+
148
+ self.embedding_dim = embedding_dim
149
+ self.output_classes = output_classes
150
+ self.margins = margins
151
+ self.s = s
152
+ self.wmetric_classify = ArcMarginProduct_subcenter(self.embedding_dim, self.output_classes, k=k)
153
+
154
+ self.warcface_margin = ArcFaceLossAdaptiveMargin(margins=self.margins,
155
+ out_dim=self.output_classes,
156
+ s=self.s)
157
+
158
+ def forward(self, features, labels):
159
+ logits = self.wmetric_classify(features.float())
160
+ logits = self.warcface_margin(logits, labels)
161
+ return logits
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34dcc7b6c57694ad0ab7cceb09c8a17cfe7eb7cd44650bd5b58005527fb48a51
3
+ size 205809924
modeling_miewid.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ import timm
6
+
7
+ from transformers import PreTrainedModel
8
+
9
+ from .heads import ArcMarginProduct, ElasticArcFace, ArcFaceSubCenterDynamic
10
+ from .configuration_miewid import MiewIdNetConfig
11
+
12
+ def weights_init_kaiming(m):
13
+ classname = m.__class__.__name__
14
+ if classname.find('Linear') != -1:
15
+ nn.init.kaiming_normal_(m.weight, a=0, mode='fan_out')
16
+ nn.init.constant_(m.bias, 0.0)
17
+ elif classname.find('Conv') != -1:
18
+ nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
19
+ if m.bias is not None:
20
+ nn.init.constant_(m.bias, 0.0)
21
+ elif classname.find('BatchNorm') != -1:
22
+ if m.affine:
23
+ nn.init.constant_(m.weight, 1.0)
24
+ nn.init.constant_(m.bias, 0.0)
25
+
26
+
27
+ def weights_init_classifier(m):
28
+ classname = m.__class__.__name__
29
+ if classname.find('Linear') != -1:
30
+ nn.init.normal_(m.weight, std=0.001)
31
+ if m.bias:
32
+ nn.init.constant_(m.bias, 0.0)
33
+
34
+ class GeM(nn.Module):
35
+ def __init__(self, p=3, eps=1e-6):
36
+ super(GeM, self).__init__()
37
+ self.p = nn.Parameter(torch.ones(1)*p)
38
+ self.eps = eps
39
+
40
+ def forward(self, x):
41
+ return self.gem(x, p=self.p, eps=self.eps)
42
+
43
+ def gem(self, x, p=3, eps=1e-6):
44
+ return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow(1./p)
45
+
46
+ def __repr__(self):
47
+ return self.__class__.__name__ + \
48
+ '(' + 'p=' + '{:.4f}'.format(self.p.data.tolist()[0]) + \
49
+ ', ' + 'eps=' + str(self.eps) + ')'
50
+
51
+ class MiewIdNet(PreTrainedModel):
52
+ config_class = MiewIdNetConfig
53
+
54
+ def __init__(self, config):
55
+ """
56
+ """
57
+ super(MiewIdNet, self).__init__(config)
58
+ print('Building Model Backbone for {} model'.format(config.model_name))
59
+ print('config.model_name', config.model_name)
60
+
61
+ n_classes=config.n_classes
62
+ model_name=config.model_name
63
+ use_fc=False
64
+ fc_dim=512
65
+ dropout=0.0
66
+ loss_module=config.loss_module
67
+ s=30.0
68
+ margin=0.50
69
+ ls_eps=0.0
70
+ theta_zero=0.785
71
+ pretrained=True
72
+ margins=config.k
73
+ k=config.k
74
+
75
+ print('model_name', model_name)
76
+
77
+ self.backbone = timm.create_model(model_name, pretrained=pretrained, num_classes=0)
78
+ final_in_features = 2152#self.backbone.classifier.in_features
79
+
80
+ print('final_in_features', final_in_features)
81
+
82
+ # self.backbone.classifier = nn.Identity()
83
+ self.backbone.global_pool = GeM()#nn.Identity()
84
+
85
+ # self.pooling = GeM()
86
+ self.bn = nn.BatchNorm1d(final_in_features)
87
+ self.use_fc = use_fc
88
+ if use_fc:
89
+ self.dropout = nn.Dropout(p=dropout)
90
+ self.bn = nn.BatchNorm1d(fc_dim)
91
+ self.bn.bias.requires_grad_(False)
92
+ self.fc = nn.Linear(final_in_features, n_classes, bias = False)
93
+ self.bn.apply(weights_init_kaiming)
94
+ self.fc.apply(weights_init_classifier)
95
+ final_in_features = fc_dim
96
+
97
+ self.loss_module = loss_module
98
+ if loss_module == 'arcface':
99
+ self.final = ElasticArcFace(final_in_features, n_classes,
100
+ s=s, m=margin)
101
+ elif loss_module == 'arcface_subcenter_dynamic':
102
+ if margins is None:
103
+ margins = [0.3] * n_classes
104
+ print(final_in_features, n_classes)
105
+ self.final = ArcFaceSubCenterDynamic(
106
+ embedding_dim=final_in_features,
107
+ output_classes=n_classes,
108
+ margins=margins,
109
+ s=s,
110
+ k=k )
111
+ # elif loss_module == 'cosface':
112
+ # self.final = AddMarginProduct(final_in_features, n_classes, s=s, m=margin)
113
+ # elif loss_module == 'adacos':
114
+ # self.final = AdaCos(final_in_features, n_classes, m=margin, theta_zero=theta_zero)
115
+ else:
116
+ self.final = nn.Linear(final_in_features, n_classes)
117
+
118
+ def _init_params(self):
119
+ nn.init.xavier_normal_(self.fc.weight)
120
+ nn.init.constant_(self.fc.bias, 0)
121
+ nn.init.constant_(self.bn.weight, 1)
122
+ nn.init.constant_(self.bn.bias, 0)
123
+
124
+ def forward(self, x, label=None):
125
+ feature = self.extract_feat(x)
126
+
127
+ return feature
128
+ # if not self.training:
129
+ # return feature
130
+ # else:
131
+ # assert label is not None
132
+ # if self.loss_module in ('arcface', 'arcface_subcenter_dynamic'):
133
+ # logits = self.final(feature, label)
134
+ # else:
135
+ # logits = self.final(feature)
136
+
137
+ # return logits
138
+
139
+ def extract_feat(self, x):
140
+ batch_size = x.shape[0]
141
+ x = self.backbone(x).view(batch_size, -1)
142
+ # x = self.pooling(x).view(batch_size, -1)
143
+ x = self.bn(x)
144
+ if self.use_fc:
145
+ x1 = self.dropout(x)
146
+ x1 = self.bn(x1)
147
+ x1 = self.fc(x1)
148
+
149
+ return x
150
+
151
+ def extract_logits(self, x, label=None):
152
+ feature = self.extract_feat(x)
153
+ assert label is not None
154
+ if self.loss_module in ('arcface', 'arcface_subcenter_dynamic'):
155
+ logits = self.final(feature, label)
156
+ else:
157
+ logits = self.final(feature)
158
+
159
+ return logits