metadata
license: apache-2.0
tags:
- protein language model
- generated_from_trainer
datasets:
- train
metrics:
- spearmanr
base_model: thundaa/tape-fluorescence-evotuning-DistilProtBert
model-index:
- name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: cradle-bio/tape-fluorescence
type: train
metrics:
- type: spearmanr
value: 0.5505486770316164
name: Spearmanr
tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
This model is a fine-tuned version of thundaa/tape-fluorescence-evotuning-DistilProtBert on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set:
- Loss: 0.3377
- Spearmanr: 0.5505
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 2560
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Spearmanr |
---|---|---|---|---|
6.2764 | 0.93 | 7 | 1.9927 | -0.0786 |
1.1206 | 1.93 | 14 | 0.8223 | -0.1543 |
0.8054 | 2.93 | 21 | 0.6894 | 0.2050 |
0.7692 | 3.93 | 28 | 0.8084 | 0.2807 |
0.7597 | 4.93 | 35 | 0.6613 | 0.4003 |
0.7416 | 5.93 | 42 | 0.6803 | 0.3829 |
0.7256 | 6.93 | 49 | 0.6428 | 0.4416 |
0.6966 | 7.93 | 56 | 0.6086 | 0.4506 |
0.7603 | 8.93 | 63 | 0.9119 | 0.4697 |
0.9187 | 9.93 | 70 | 0.6048 | 0.4757 |
1.0371 | 10.93 | 77 | 2.0742 | 0.4076 |
1.0947 | 11.93 | 84 | 0.6633 | 0.4522 |
0.6946 | 12.93 | 91 | 0.6008 | 0.4123 |
0.6618 | 13.93 | 98 | 0.5931 | 0.4457 |
0.8635 | 14.93 | 105 | 1.9561 | 0.4331 |
0.9444 | 15.93 | 112 | 0.5627 | 0.5041 |
0.5535 | 16.93 | 119 | 0.4348 | 0.4840 |
0.9059 | 17.93 | 126 | 0.6704 | 0.5123 |
0.5693 | 18.93 | 133 | 0.4616 | 0.5285 |
0.6298 | 19.93 | 140 | 0.6915 | 0.5166 |
0.955 | 20.93 | 147 | 0.6679 | 0.5677 |
0.7866 | 21.93 | 154 | 0.8136 | 0.5559 |
0.6687 | 22.93 | 161 | 0.4782 | 0.5561 |
0.5336 | 23.93 | 168 | 0.4447 | 0.5499 |
0.4673 | 24.93 | 175 | 0.4258 | 0.5428 |
0.478 | 25.93 | 182 | 0.3651 | 0.5329 |
0.4023 | 26.93 | 189 | 0.3688 | 0.5428 |
0.3961 | 27.93 | 196 | 0.3692 | 0.5509 |
0.3808 | 28.93 | 203 | 0.3434 | 0.5514 |
0.3433 | 29.93 | 210 | 0.3377 | 0.5505 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1