librarian-bot's picture
Librarian Bot: Add base_model information to model
4b73c55
|
raw
history blame
3.79 kB
metadata
license: apache-2.0
tags:
  - protein language model
  - generated_from_trainer
datasets:
  - train
metrics:
  - spearmanr
base_model: thundaa/tape-fluorescence-evotuning-DistilProtBert
model-index:
  - name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: cradle-bio/tape-fluorescence
          type: train
        metrics:
          - type: spearmanr
            value: 0.5505486770316164
            name: Spearmanr

tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert

This model is a fine-tuned version of thundaa/tape-fluorescence-evotuning-DistilProtBert on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3377
  • Spearmanr: 0.5505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 40
  • eval_batch_size: 40
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 2560
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearmanr
6.2764 0.93 7 1.9927 -0.0786
1.1206 1.93 14 0.8223 -0.1543
0.8054 2.93 21 0.6894 0.2050
0.7692 3.93 28 0.8084 0.2807
0.7597 4.93 35 0.6613 0.4003
0.7416 5.93 42 0.6803 0.3829
0.7256 6.93 49 0.6428 0.4416
0.6966 7.93 56 0.6086 0.4506
0.7603 8.93 63 0.9119 0.4697
0.9187 9.93 70 0.6048 0.4757
1.0371 10.93 77 2.0742 0.4076
1.0947 11.93 84 0.6633 0.4522
0.6946 12.93 91 0.6008 0.4123
0.6618 13.93 98 0.5931 0.4457
0.8635 14.93 105 1.9561 0.4331
0.9444 15.93 112 0.5627 0.5041
0.5535 16.93 119 0.4348 0.4840
0.9059 17.93 126 0.6704 0.5123
0.5693 18.93 133 0.4616 0.5285
0.6298 19.93 140 0.6915 0.5166
0.955 20.93 147 0.6679 0.5677
0.7866 21.93 154 0.8136 0.5559
0.6687 22.93 161 0.4782 0.5561
0.5336 23.93 168 0.4447 0.5499
0.4673 24.93 175 0.4258 0.5428
0.478 25.93 182 0.3651 0.5329
0.4023 26.93 189 0.3688 0.5428
0.3961 27.93 196 0.3692 0.5509
0.3808 28.93 203 0.3434 0.5514
0.3433 29.93 210 0.3377 0.5505

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1