update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- protein language model
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- train
|
8 |
+
metrics:
|
9 |
+
- spearmanr
|
10 |
+
model-index:
|
11 |
+
- name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: cradle-bio/tape-fluorescence
|
18 |
+
type: train
|
19 |
+
metrics:
|
20 |
+
- name: Spearmanr
|
21 |
+
type: spearmanr
|
22 |
+
value: 0.3011866489457721
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.6667
|
33 |
+
- Spearmanr: 0.3012
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 5e-05
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 32
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 128
|
57 |
+
- total_train_batch_size: 4096
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
67 |
+
| 9.0152 | 0.85 | 4 | 4.9739 | -0.0152 |
|
68 |
+
| 4.0359 | 1.85 | 8 | 2.1126 | 0.0919 |
|
69 |
+
| 1.7594 | 2.85 | 12 | 0.9896 | 0.0973 |
|
70 |
+
| 0.9771 | 3.85 | 16 | 0.6949 | 0.3219 |
|
71 |
+
| 0.7046 | 4.85 | 20 | 0.6667 | 0.3012 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.18.0
|
77 |
+
- Pytorch 1.11.0
|
78 |
+
- Datasets 2.1.0
|
79 |
+
- Tokenizers 0.12.1
|