update model card README.md
Browse files
README.md
CHANGED
@@ -19,7 +19,7 @@ model-index:
|
|
19 |
metrics:
|
20 |
- name: Spearmanr
|
21 |
type: spearmanr
|
22 |
-
value: 0.
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,8 +29,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset.
|
31 |
It achieves the following results on the evaluation set:
|
32 |
-
- Loss: 0.
|
33 |
-
- Spearmanr: 0.
|
34 |
|
35 |
## Model description
|
36 |
|
@@ -50,25 +50,50 @@ More information needed
|
|
50 |
|
51 |
The following hyperparameters were used during training:
|
52 |
- learning_rate: 5e-05
|
53 |
-
- train_batch_size:
|
54 |
-
- eval_batch_size:
|
55 |
-
- seed:
|
56 |
-
- gradient_accumulation_steps:
|
57 |
-
- total_train_batch_size:
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
-
- num_epochs:
|
61 |
- mixed_precision_training: Native AMP
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
| 0.
|
71 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
19 |
metrics:
|
20 |
- name: Spearmanr
|
21 |
type: spearmanr
|
22 |
+
value: 0.5742059850477367
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset.
|
31 |
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.2709
|
33 |
+
- Spearmanr: 0.5742
|
34 |
|
35 |
## Model description
|
36 |
|
|
|
50 |
|
51 |
The following hyperparameters were used during training:
|
52 |
- learning_rate: 5e-05
|
53 |
+
- train_batch_size: 40
|
54 |
+
- eval_batch_size: 40
|
55 |
+
- seed: 11
|
56 |
+
- gradient_accumulation_steps: 64
|
57 |
+
- total_train_batch_size: 2560
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 30
|
61 |
- mixed_precision_training: Native AMP
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|
66 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
67 |
+
| 6.4382 | 0.93 | 7 | 2.0198 | -0.0244 |
|
68 |
+
| 1.1243 | 1.93 | 14 | 0.7986 | -0.0083 |
|
69 |
+
| 0.802 | 2.93 | 21 | 0.6902 | 0.2336 |
|
70 |
+
| 0.7469 | 3.93 | 28 | 0.6665 | 0.3001 |
|
71 |
+
| 0.7519 | 4.93 | 35 | 0.6578 | 0.3895 |
|
72 |
+
| 0.7247 | 5.93 | 42 | 0.6346 | 0.3682 |
|
73 |
+
| 0.6991 | 6.93 | 49 | 0.8796 | 0.3681 |
|
74 |
+
| 0.6829 | 7.93 | 56 | 0.6098 | 0.3747 |
|
75 |
+
| 0.7241 | 8.93 | 63 | 0.7538 | 0.4345 |
|
76 |
+
| 0.6703 | 9.93 | 70 | 0.5646 | 0.4419 |
|
77 |
+
| 0.6415 | 10.93 | 77 | 1.6112 | 0.3947 |
|
78 |
+
| 1.0551 | 11.93 | 84 | 1.9104 | 0.4256 |
|
79 |
+
| 1.2621 | 12.93 | 91 | 0.5694 | 0.4640 |
|
80 |
+
| 0.7165 | 13.93 | 98 | 0.5647 | 0.4748 |
|
81 |
+
| 0.602 | 14.93 | 105 | 0.3979 | 0.4907 |
|
82 |
+
| 0.4668 | 15.93 | 112 | 0.3896 | 0.4891 |
|
83 |
+
| 0.5248 | 16.93 | 119 | 0.5101 | 0.4878 |
|
84 |
+
| 0.6232 | 17.93 | 126 | 0.3298 | 0.5128 |
|
85 |
+
| 0.5491 | 18.93 | 133 | 0.6220 | 0.5210 |
|
86 |
+
| 0.5022 | 19.93 | 140 | 0.5351 | 0.5212 |
|
87 |
+
| 0.7122 | 20.93 | 147 | 0.3773 | 0.5278 |
|
88 |
+
| 0.377 | 21.93 | 154 | 0.3368 | 0.5278 |
|
89 |
+
| 0.3689 | 22.93 | 161 | 0.4503 | 0.5266 |
|
90 |
+
| 0.3768 | 23.93 | 168 | 0.3237 | 0.5428 |
|
91 |
+
| 0.3308 | 24.93 | 175 | 0.2850 | 0.5559 |
|
92 |
+
| 0.3182 | 25.93 | 182 | 0.2804 | 0.5611 |
|
93 |
+
| 0.3135 | 26.93 | 189 | 0.2792 | 0.5660 |
|
94 |
+
| 0.2953 | 27.93 | 196 | 0.2669 | 0.5707 |
|
95 |
+
| 0.2917 | 28.93 | 203 | 0.2654 | 0.5742 |
|
96 |
+
| 0.2652 | 29.93 | 210 | 0.2709 | 0.5742 |
|
97 |
|
98 |
|
99 |
### Framework versions
|