--- license: apache-2.0 tags: - protein language model - generated_from_trainer datasets: - train metrics: - spearmanr model-index: - name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert results: - task: name: Text Classification type: text-classification dataset: name: cradle-bio/tape-fluorescence type: train metrics: - name: Spearmanr type: spearmanr value: 0.5742059850477367 --- # tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set: - Loss: 0.2709 - Spearmanr: 0.5742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 11 - gradient_accumulation_steps: 64 - total_train_batch_size: 2560 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 6.4382 | 0.93 | 7 | 2.0198 | -0.0244 | | 1.1243 | 1.93 | 14 | 0.7986 | -0.0083 | | 0.802 | 2.93 | 21 | 0.6902 | 0.2336 | | 0.7469 | 3.93 | 28 | 0.6665 | 0.3001 | | 0.7519 | 4.93 | 35 | 0.6578 | 0.3895 | | 0.7247 | 5.93 | 42 | 0.6346 | 0.3682 | | 0.6991 | 6.93 | 49 | 0.8796 | 0.3681 | | 0.6829 | 7.93 | 56 | 0.6098 | 0.3747 | | 0.7241 | 8.93 | 63 | 0.7538 | 0.4345 | | 0.6703 | 9.93 | 70 | 0.5646 | 0.4419 | | 0.6415 | 10.93 | 77 | 1.6112 | 0.3947 | | 1.0551 | 11.93 | 84 | 1.9104 | 0.4256 | | 1.2621 | 12.93 | 91 | 0.5694 | 0.4640 | | 0.7165 | 13.93 | 98 | 0.5647 | 0.4748 | | 0.602 | 14.93 | 105 | 0.3979 | 0.4907 | | 0.4668 | 15.93 | 112 | 0.3896 | 0.4891 | | 0.5248 | 16.93 | 119 | 0.5101 | 0.4878 | | 0.6232 | 17.93 | 126 | 0.3298 | 0.5128 | | 0.5491 | 18.93 | 133 | 0.6220 | 0.5210 | | 0.5022 | 19.93 | 140 | 0.5351 | 0.5212 | | 0.7122 | 20.93 | 147 | 0.3773 | 0.5278 | | 0.377 | 21.93 | 154 | 0.3368 | 0.5278 | | 0.3689 | 22.93 | 161 | 0.4503 | 0.5266 | | 0.3768 | 23.93 | 168 | 0.3237 | 0.5428 | | 0.3308 | 24.93 | 175 | 0.2850 | 0.5559 | | 0.3182 | 25.93 | 182 | 0.2804 | 0.5611 | | 0.3135 | 26.93 | 189 | 0.2792 | 0.5660 | | 0.2953 | 27.93 | 196 | 0.2669 | 0.5707 | | 0.2917 | 28.93 | 203 | 0.2654 | 0.5742 | | 0.2652 | 29.93 | 210 | 0.2709 | 0.5742 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1