--- license: apache-2.0 tags: - protein language model - generated_from_trainer datasets: - train metrics: - spearmanr model-index: - name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert results: - task: name: Text Classification type: text-classification dataset: name: cradle-bio/tape-fluorescence type: train metrics: - name: Spearmanr type: spearmanr value: 0.6081143924159805 --- # tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert This model is a fine-tuned version of [thundaa/tape-fluorescence-evotuning-DistilProtBert](https://huggingface.co/thundaa/tape-fluorescence-evotuning-DistilProtBert) on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set: - Loss: 0.2209 - Spearmanr: 0.6081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 11 - gradient_accumulation_steps: 64 - total_train_batch_size: 2560 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 6.3796 | 0.93 | 7 | 2.2462 | 0.2021 | | 1.2421 | 1.93 | 14 | 0.7066 | 0.1024 | | 0.7978 | 2.93 | 21 | 0.6895 | 0.1444 | | 0.7613 | 3.93 | 28 | 0.6758 | 0.2527 | | 0.7498 | 4.93 | 35 | 0.6772 | 0.2620 | | 0.7486 | 5.93 | 42 | 0.6703 | 0.3991 | | 0.7394 | 6.93 | 49 | 0.6506 | 0.4038 | | 0.8251 | 7.93 | 56 | 1.3414 | 0.3358 | | 0.8479 | 8.93 | 63 | 0.6745 | 0.3353 | | 0.7954 | 9.93 | 70 | 0.6610 | 0.4157 | | 0.7316 | 10.93 | 77 | 0.4977 | 0.4483 | | 0.6027 | 11.93 | 84 | 0.4138 | 0.4517 | | 0.5239 | 12.93 | 91 | 0.4185 | 0.4798 | | 0.4802 | 13.93 | 98 | 0.3637 | 0.5082 | | 0.5417 | 14.93 | 105 | 0.3360 | 0.5143 | | 0.5022 | 15.93 | 112 | 0.5404 | 0.5207 | | 0.4487 | 16.93 | 119 | 0.4884 | 0.5347 | | 0.4229 | 17.93 | 126 | 0.2941 | 0.5530 | | 0.3785 | 18.93 | 133 | 0.2920 | 0.5625 | | 0.3448 | 19.93 | 140 | 0.3082 | 0.5589 | | 0.3352 | 20.93 | 147 | 0.3006 | 0.5638 | | 0.3219 | 21.93 | 154 | 0.2707 | 0.5737 | | 0.3156 | 22.93 | 161 | 0.2623 | 0.5775 | | 0.3142 | 23.93 | 168 | 0.3162 | 0.5752 | | 0.3003 | 24.93 | 175 | 0.2487 | 0.5897 | | 0.303 | 25.93 | 182 | 0.2633 | 0.5981 | | 0.2757 | 26.93 | 189 | 0.2813 | 0.5921 | | 0.2836 | 27.93 | 196 | 0.2696 | 0.5968 | | 0.2759 | 28.93 | 203 | 0.2230 | 0.6060 | | 0.232 | 29.93 | 210 | 0.2209 | 0.6081 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1