update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- spearmanr
|
6 |
+
model-index:
|
7 |
+
- name: thermo-predictor-thermo-evotuning-prot_bert
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# thermo-predictor-thermo-evotuning-prot_bert
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [thundaa/thermo-evotuning-prot_bert](https://huggingface.co/thundaa/thermo-evotuning-prot_bert) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1617
|
19 |
+
- Spearmanr: 0.6914
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 4e-05
|
39 |
+
- train_batch_size: 256
|
40 |
+
- eval_batch_size: 256
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 64
|
43 |
+
- total_train_batch_size: 16384
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 1
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Spearmanr |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
53 |
+
| 0.4734 | 0.68 | 2 | 0.3146 | 0.3359 |
|
54 |
+
| 0.4392 | 1.68 | 4 | 0.2936 | 0.3407 |
|
55 |
+
| 0.4034 | 2.68 | 6 | 0.2633 | 0.3696 |
|
56 |
+
| 0.3669 | 3.68 | 8 | 0.2437 | 0.3903 |
|
57 |
+
| 0.3496 | 4.68 | 10 | 0.2377 | 0.4102 |
|
58 |
+
| 0.3351 | 5.68 | 12 | 0.2285 | 0.4204 |
|
59 |
+
| 0.3289 | 6.68 | 14 | 0.2267 | 0.4180 |
|
60 |
+
| 0.3267 | 7.68 | 16 | 0.2258 | 0.4242 |
|
61 |
+
| 0.3177 | 8.68 | 18 | 0.2206 | 0.4295 |
|
62 |
+
| 0.3116 | 9.68 | 20 | 0.2150 | 0.4365 |
|
63 |
+
| 0.3039 | 10.68 | 22 | 0.2115 | 0.4365 |
|
64 |
+
| 0.2985 | 11.68 | 24 | 0.2062 | 0.4469 |
|
65 |
+
| 0.2927 | 12.68 | 26 | 0.2045 | 0.4531 |
|
66 |
+
| 0.2885 | 13.68 | 28 | 0.2005 | 0.4603 |
|
67 |
+
| 0.2838 | 14.68 | 30 | 0.1987 | 0.4690 |
|
68 |
+
| 0.2806 | 15.68 | 32 | 0.1975 | 0.4744 |
|
69 |
+
| 0.2772 | 16.68 | 34 | 0.1970 | 0.4765 |
|
70 |
+
| 0.2728 | 17.68 | 36 | 0.1939 | 0.4845 |
|
71 |
+
| 0.2684 | 18.68 | 38 | 0.1931 | 0.4858 |
|
72 |
+
| 0.2641 | 19.68 | 40 | 0.1925 | 0.4936 |
|
73 |
+
| 0.2608 | 20.68 | 42 | 0.1905 | 0.4929 |
|
74 |
+
| 0.2566 | 21.68 | 44 | 0.1886 | 0.5049 |
|
75 |
+
| 0.2518 | 22.68 | 46 | 0.1875 | 0.5095 |
|
76 |
+
| 0.2467 | 23.68 | 48 | 0.1869 | 0.5141 |
|
77 |
+
| 0.2424 | 24.68 | 50 | 0.1859 | 0.5161 |
|
78 |
+
| 0.2375 | 25.68 | 52 | 0.1850 | 0.5223 |
|
79 |
+
| 0.2329 | 26.68 | 54 | 0.1851 | 0.5210 |
|
80 |
+
| 0.2279 | 27.68 | 56 | 0.1850 | 0.5294 |
|
81 |
+
| 0.2226 | 28.68 | 58 | 0.1837 | 0.5310 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.18.0
|
87 |
+
- Pytorch 1.11.0
|
88 |
+
- Datasets 2.1.0
|
89 |
+
- Tokenizers 0.12.1
|