Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
datasets:
|
@@ -53,10 +54,9 @@ model_name = "croissantllm/base_185k"
|
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant.\nHe is heading to the market. -> Il va au marché.\nWe are running on the beach. ->", return_tensors="pt").to(model.device)
|
60 |
tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5)
|
61 |
print(tokenizer.decode(tokens[0]))
|
62 |
|
@@ -64,4 +64,4 @@ print(tokenizer.decode(tokens[0]))
|
|
64 |
inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device)
|
65 |
tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60)
|
66 |
print(tokenizer.decode(tokens[0]))
|
67 |
-
```
|
|
|
1 |
+
|
2 |
---
|
3 |
license: mit
|
4 |
datasets:
|
|
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
56 |
|
57 |
+
inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant.
|
58 |
+
He is heading to the market. -> Il va au marché.
|
59 |
+
We are running on the beach. ->", return_tensors="pt").to(model.device)
|
|
|
60 |
tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5)
|
61 |
print(tokenizer.decode(tokens[0]))
|
62 |
|
|
|
64 |
inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device)
|
65 |
tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60)
|
66 |
print(tokenizer.decode(tokens[0]))
|
67 |
+
```
|