|
from torch import nn |
|
|
|
import torch.nn.functional as F |
|
import torch |
|
|
|
from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d |
|
|
|
|
|
def kp2gaussian(kp, spatial_size, kp_variance): |
|
""" |
|
Transform a keypoint into gaussian like representation |
|
""" |
|
mean = kp['value'] |
|
|
|
coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) |
|
number_of_leading_dimensions = len(mean.shape) - 1 |
|
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape |
|
coordinate_grid = coordinate_grid.view(*shape) |
|
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1) |
|
coordinate_grid = coordinate_grid.repeat(*repeats) |
|
|
|
|
|
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 2) |
|
mean = mean.view(*shape) |
|
|
|
mean_sub = (coordinate_grid - mean) |
|
|
|
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) |
|
|
|
return out |
|
|
|
|
|
def make_coordinate_grid(spatial_size, type): |
|
""" |
|
Create a meshgrid [-1,1] x [-1,1] of given spatial_size. |
|
""" |
|
h, w = spatial_size |
|
x = torch.arange(w).type(type) |
|
y = torch.arange(h).type(type) |
|
|
|
x = (2 * (x / (w - 1)) - 1) |
|
y = (2 * (y / (h - 1)) - 1) |
|
|
|
yy = y.view(-1, 1).repeat(1, w) |
|
xx = x.view(1, -1).repeat(h, 1) |
|
|
|
meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) |
|
|
|
return meshed |
|
|
|
|
|
class ResBlock2d(nn.Module): |
|
""" |
|
Res block, preserve spatial resolution. |
|
""" |
|
|
|
def __init__(self, in_features, kernel_size, padding): |
|
super(ResBlock2d, self).__init__() |
|
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, |
|
padding=padding) |
|
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, |
|
padding=padding) |
|
self.norm1 = BatchNorm2d(in_features, affine=True) |
|
self.norm2 = BatchNorm2d(in_features, affine=True) |
|
|
|
def forward(self, x): |
|
out = self.norm1(x) |
|
out = F.relu(out) |
|
out = self.conv1(out) |
|
out = self.norm2(out) |
|
out = F.relu(out) |
|
out = self.conv2(out) |
|
out += x |
|
return out |
|
|
|
|
|
class UpBlock2d(nn.Module): |
|
""" |
|
Upsampling block for use in decoder. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): |
|
super(UpBlock2d, self).__init__() |
|
|
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, |
|
padding=padding, groups=groups) |
|
self.norm = BatchNorm2d(out_features, affine=True) |
|
|
|
def forward(self, x): |
|
out = F.interpolate(x, scale_factor=2) |
|
out = self.conv(out) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class DownBlock2d(nn.Module): |
|
""" |
|
Downsampling block for use in encoder. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): |
|
super(DownBlock2d, self).__init__() |
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, |
|
padding=padding, groups=groups) |
|
self.norm = BatchNorm2d(out_features, affine=True) |
|
self.pool = nn.AvgPool2d(kernel_size=(2, 2)) |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
out = self.pool(out) |
|
return out |
|
|
|
|
|
class SameBlock2d(nn.Module): |
|
""" |
|
Simple block, preserve spatial resolution. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1): |
|
super(SameBlock2d, self).__init__() |
|
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, |
|
kernel_size=kernel_size, padding=padding, groups=groups) |
|
self.norm = BatchNorm2d(out_features, affine=True) |
|
|
|
def forward(self, x): |
|
out = self.conv(x) |
|
out = self.norm(out) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class Encoder(nn.Module): |
|
""" |
|
Hourglass Encoder |
|
""" |
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): |
|
super(Encoder, self).__init__() |
|
|
|
down_blocks = [] |
|
for i in range(num_blocks): |
|
down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), |
|
min(max_features, block_expansion * (2 ** (i + 1))), |
|
kernel_size=3, padding=1)) |
|
self.down_blocks = nn.ModuleList(down_blocks) |
|
|
|
def forward(self, x): |
|
outs = [x] |
|
for down_block in self.down_blocks: |
|
outs.append(down_block(outs[-1])) |
|
return outs |
|
|
|
|
|
class Decoder(nn.Module): |
|
""" |
|
Hourglass Decoder |
|
""" |
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): |
|
super(Decoder, self).__init__() |
|
|
|
up_blocks = [] |
|
|
|
for i in range(num_blocks)[::-1]: |
|
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) |
|
out_filters = min(max_features, block_expansion * (2 ** i)) |
|
up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1)) |
|
|
|
self.up_blocks = nn.ModuleList(up_blocks) |
|
self.out_filters = block_expansion + in_features |
|
|
|
def forward(self, x): |
|
out = x.pop() |
|
for up_block in self.up_blocks: |
|
out = up_block(out) |
|
skip = x.pop() |
|
out = torch.cat([out, skip], dim=1) |
|
return out |
|
|
|
|
|
class Hourglass(nn.Module): |
|
""" |
|
Hourglass architecture. |
|
""" |
|
|
|
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): |
|
super(Hourglass, self).__init__() |
|
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) |
|
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) |
|
self.out_filters = self.decoder.out_filters |
|
|
|
def forward(self, x): |
|
return self.decoder(self.encoder(x)) |
|
|
|
|
|
class AntiAliasInterpolation2d(nn.Module): |
|
""" |
|
Band-limited downsampling, for better preservation of the input signal. |
|
""" |
|
def __init__(self, channels, scale): |
|
super(AntiAliasInterpolation2d, self).__init__() |
|
sigma = (1 / scale - 1) / 2 |
|
kernel_size = 2 * round(sigma * 4) + 1 |
|
self.ka = kernel_size // 2 |
|
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka |
|
|
|
kernel_size = [kernel_size, kernel_size] |
|
sigma = [sigma, sigma] |
|
|
|
|
|
kernel = 1 |
|
meshgrids = torch.meshgrid( |
|
[ |
|
torch.arange(size, dtype=torch.float32) |
|
for size in kernel_size |
|
] |
|
) |
|
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): |
|
mean = (size - 1) / 2 |
|
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) |
|
|
|
|
|
kernel = kernel / torch.sum(kernel) |
|
|
|
kernel = kernel.view(1, 1, *kernel.size()) |
|
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) |
|
|
|
self.register_buffer('weight', kernel) |
|
self.groups = channels |
|
self.scale = scale |
|
inv_scale = 1 / scale |
|
self.int_inv_scale = int(inv_scale) |
|
|
|
def forward(self, input): |
|
if self.scale == 1.0: |
|
return input |
|
|
|
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) |
|
out = F.conv2d(out, weight=self.weight, groups=self.groups) |
|
out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale] |
|
|
|
return out |
|
|