File size: 9,974 Bytes
ca59500 906fcef caa3d03 785f5a9 ca59500 46318ec ca59500 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
```python
import torch
from torch import nn
import random
from transformers import AutoModelForCausalLM, AutoTokenizer
# make sure the model doesn't generate mask tokens
bias = torch.zeros(34048)
bias[32000:] = -100
model.lm_head.bias = nn.Parameter(bias)
# --------------------------------------------------------------------------------
# Generation without masking
input_ids = tokenizer("Once upon a time, in a land far far away...", return_tensors='pt').input_ids
print(input_ids)
# tensor([[ 1, 5713, 3714, 264, 727, 28725, 297, 264, 2533, 2082,
# 2082, 1753, 1101]])
output = model.generate(input_ids, max_new_tokens=64)
print(tokenizer.decode(output[0]))
# '<s> Once upon a time, in a land far far away...\n\nThere was a magical place called Disneyland.\n\nIt was a place where dreams came true, where fairy tales became reality, and where magic was all around.\n\nBut one day, something terrible happened.\n\nThe magic began to fade.\n\nThe fairy tales became dull, the'
# --------------------------------------------------------------------------------
# replace "far far" with two random indices instead (anything after 32k up to 34,048)
# the model should pick up that two repeating words after "Once upon a time, in a land-"
# and before "away" would probably be "far far"
input_ids[input_ids==2082] = 32_001
print(input_ids)
# tensor([[ 1, 5713, 3714, 264, 727, 28725, 297, 264, 2533, 32001,
# 32001, 1753, 1101]])
output = model.generate(input_ids, max_new_tokens=64)
print(tokenizer.decode(output[0]))
# '<s> Once upon a time, in a land<ID-000001><ID-000001> away...\n\nOnce upon a time, in a land far, far away, there was a magical kingdom called Flanders. It was a peaceful land, where everyone lived happily ever after.\n\nBut one day, a terrible thing happened. A terrible, terrible thing.\n\nA terrible, terrible thing happened.'
# --------------------------------------------------------------------------------
# we can also get rid of everything except "<s>", "Once", "upon", "away", "..."
def create_masked_ids(input_ids, token_offset, ids_to_mask):
unique_ids = torch.unique(input_ids).tolist()
unique_id_map = random.sample([i for i in range(2048)], len(unique_ids))
id_to_shuffled = {id: shuffled for id, shuffled in zip(unique_ids, unique_id_map)}
def map_to_shuffled(id):
return id_to_shuffled[id] + token_offset
shuffled_ids = input_ids.clone().apply_(map_to_shuffled)
mask = torch.zeros_like(input_ids, dtype=torch.bool)
for id_to_mask in ids_to_mask:
mask |= (input_ids == id_to_mask)
masked_ids = torch.where(mask, input_ids, shuffled_ids)
return masked_ids
masked_ids = create_masked_ids(input_ids, 32_000, [1, 5713, 3714, 1753, 1101])
print(masked_ids)
# tensor([[ 1, 5713, 3714, 33048, 34032, 32238, 32016, 33048, 33013, 33299,
# 33299, 1753, 1101]])
output = model.generate(masked_ids, max_new_tokens=64)
print(tokenizer.decode(output[0]))
# '<s> Once upon<ID-000418><ID-0007F0><ID-0000EE><ID-000010><ID-000418><ID-0003F5><ID-000513><ID-000513> away...\n\nOnce upon a time, there was a young man named Alex. He was a very curious young man, and loved to explore the world around him. One day, he stumbled upon a magical book called "The Book of Secrets." This book contained all sorts of secrets about the world, and Alex was fasc'
```
this model isn't really made for benchmarks, it's worse on everything besides ARC-C and TruthfulQA
| Model | ARC-C | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8k |
| ------------------------------------------------------------ | --------- | --------- | ---------- | ---------- | ---------- | --------- |
| [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 59.98 | **83.31** | **64.16** | 42.15 | **78.37** | **37.83** |
| [crumb/92d52f-ame-full-7B](https://hf.co/crumb/92d52f-ame-full-7B) | **61.18** | 81.52 | 63.44 | **42.39** | 77.58 | 35.41 |
it's got extra tokens which can all equally be used as masks, you can replace all instances of one token in context with one of the extra tokens (`[f'<ID-{i:06X}>' for i in range(2048)]`) to give the model an extra hard time. it was trained with context length 2048 on three separate replacement techniques through a schedule, with 80% of all sequences being completely replaced with the mask tokens near the end of training. it was trained over ~0.5B tokens
> what? how is that useful?
i'm hoping to finetune it further while replacing the entire tokenizer with any number of other tokenizers, all utilizing the unique mask ids, to hopefully build a causal model of any sufficiently long artifact from any domain, for example, the voynich manuscript or an alien artifact
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |