crumb commited on
Commit
a3b6c01
1 Parent(s): a4b629e

Upload model

Browse files
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoint-19000",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPT2ALMHeadModel"
6
+ ],
7
+ "attn_bias": false,
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_gpt2a.GPT2AConfig",
11
+ "AutoModelForCausalLM": "modeling_gpt2a.GPT2ALMHeadModel"
12
+ },
13
+ "bos_token_id": 50256,
14
+ "embd_pdrop": 0.0,
15
+ "eos_token_id": 50256,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "mlp_bias": false,
19
+ "model_type": "gpt2a",
20
+ "n_embd": 768,
21
+ "n_head": 6,
22
+ "n_inner": 1920,
23
+ "n_layer": 6,
24
+ "n_positions": 4096,
25
+ "reorder_and_upcast_attn": false,
26
+ "resid_pdrop": 0.0,
27
+ "scale_attn_by_inverse_layer_idx": false,
28
+ "scale_attn_weights": true,
29
+ "summary_activation": null,
30
+ "summary_first_dropout": 0.1,
31
+ "summary_proj_to_labels": true,
32
+ "summary_type": "cls_index",
33
+ "summary_use_proj": true,
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.34.1",
36
+ "use_cache": true,
37
+ "vocab_size": 50257
38
+ }
configuration_gpt2a.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ OpenAI GPT-2 configuration"""
17
+ from collections import OrderedDict
18
+ from typing import Any, List, Mapping, Optional
19
+
20
+ from transformers import PreTrainedTokenizer, TensorType, is_torch_available
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.onnx import OnnxConfigWithPast, PatchingSpec
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
29
+ "gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
30
+ "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
31
+ "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
32
+ "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
33
+ "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
34
+ }
35
+
36
+
37
+ class GPT2AConfig(PretrainedConfig):
38
+ """
39
+ This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
40
+ instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
41
+ configuration with the defaults will yield a similar configuration to that of the GPT-2
42
+ [gpt2](https://huggingface.co/gpt2) architecture.
43
+
44
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
45
+ documentation from [`PretrainedConfig`] for more information.
46
+
47
+
48
+ Args:
49
+ vocab_size (`int`, *optional*, defaults to 50257):
50
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
51
+ `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
52
+ n_positions (`int`, *optional*, defaults to 1024):
53
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
54
+ just in case (e.g., 512 or 1024 or 2048).
55
+ n_embd (`int`, *optional*, defaults to 768):
56
+ Dimensionality of the embeddings and hidden states.
57
+ n_layer (`int`, *optional*, defaults to 12):
58
+ Number of hidden layers in the Transformer encoder.
59
+ n_head (`int`, *optional*, defaults to 12):
60
+ Number of attention heads for each attention layer in the Transformer encoder.
61
+ n_inner (`int`, *optional*, defaults to None):
62
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
63
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
64
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
65
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
66
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
67
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
68
+ The dropout ratio for the embeddings.
69
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
70
+ The dropout ratio for the attention.
71
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
72
+ The epsilon to use in the layer normalization layers.
73
+ initializer_range (`float`, *optional*, defaults to 0.02):
74
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
75
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
76
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
77
+ [`TFGPT2DoubleHeadsModel`].
78
+
79
+ Has to be one of the following options:
80
+
81
+ - `"last"`: Take the last token hidden state (like XLNet).
82
+ - `"first"`: Take the first token hidden state (like BERT).
83
+ - `"mean"`: Take the mean of all tokens hidden states.
84
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
85
+ - `"attn"`: Not implemented now, use multi-head attention.
86
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
87
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
88
+ [`TFGPT2DoubleHeadsModel`].
89
+
90
+ Whether or not to add a projection after the vector extraction.
91
+ summary_activation (`str`, *optional*):
92
+ Argument used when doing sequence summary. Used in for the multiple choice head in
93
+ [`GPT2DoubleHeadsModel`].
94
+
95
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
96
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
97
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
98
+ [`TFGPT2DoubleHeadsModel`].
99
+
100
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
101
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
102
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
103
+ [`TFGPT2DoubleHeadsModel`].
104
+
105
+ The dropout ratio to be used after the projection and activation.
106
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
107
+ Scale attention weights by dividing by sqrt(hidden_size)..
108
+ use_cache (`bool`, *optional*, defaults to `True`):
109
+ Whether or not the model should return the last key/values attentions (not used by all models).
110
+ scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
111
+ Whether to additionally scale attention weights by `1 / layer_idx + 1`.
112
+ reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
113
+ Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
114
+ dot-product/softmax to float() when training with mixed precision.
115
+
116
+ Example:
117
+
118
+ ```python
119
+ >>> from transformers import GPT2Config, GPT2Model
120
+
121
+ >>> # Initializing a GPT2 configuration
122
+ >>> configuration = GPT2Config()
123
+
124
+ >>> # Initializing a model (with random weights) from the configuration
125
+ >>> model = GPT2Model(configuration)
126
+
127
+ >>> # Accessing the model configuration
128
+ >>> configuration = model.config
129
+ ```"""
130
+
131
+ model_type = "gpt2a"
132
+ keys_to_ignore_at_inference = ["past_key_values"]
133
+ attribute_map = {
134
+ "hidden_size": "n_embd",
135
+ "max_position_embeddings": "n_positions",
136
+ "num_attention_heads": "n_head",
137
+ "num_hidden_layers": "n_layer",
138
+ }
139
+
140
+ def __init__(
141
+ self,
142
+ vocab_size=50257,
143
+ n_positions=1024,
144
+ n_embd=768,
145
+ n_layer=12,
146
+ n_head=12,
147
+ n_inner=None,
148
+ activation_function="gelu_new",
149
+ resid_pdrop=0.1,
150
+ embd_pdrop=0.1,
151
+ attn_pdrop=0.1,
152
+ layer_norm_epsilon=1e-6,
153
+ initializer_range=0.02,
154
+ summary_type="cls_index",
155
+ summary_use_proj=True,
156
+ summary_activation=None,
157
+ summary_proj_to_labels=True,
158
+ summary_first_dropout=0.1,
159
+ scale_attn_weights=True,
160
+ use_cache=True,
161
+ bos_token_id=50256,
162
+ eos_token_id=50256,
163
+ scale_attn_by_inverse_layer_idx=False,
164
+ reorder_and_upcast_attn=False,
165
+
166
+ mlp_bias = True,
167
+ attn_bias = True,
168
+ # thoughts = 8,
169
+ **kwargs,
170
+ ):
171
+ self.mlp_bias = mlp_bias
172
+ self.attn_bias = attn_bias
173
+ # self.thoughts = thoughts
174
+
175
+ self.vocab_size = vocab_size
176
+ self.n_positions = n_positions
177
+ self.n_embd = n_embd
178
+ self.n_layer = n_layer
179
+ self.n_head = n_head
180
+ self.n_inner = n_inner
181
+ self.activation_function = activation_function
182
+ self.resid_pdrop = resid_pdrop
183
+ self.embd_pdrop = embd_pdrop
184
+ self.attn_pdrop = attn_pdrop
185
+ self.layer_norm_epsilon = layer_norm_epsilon
186
+ self.initializer_range = initializer_range
187
+ self.summary_type = summary_type
188
+ self.summary_use_proj = summary_use_proj
189
+ self.summary_activation = summary_activation
190
+ self.summary_first_dropout = summary_first_dropout
191
+ self.summary_proj_to_labels = summary_proj_to_labels
192
+ self.scale_attn_weights = scale_attn_weights
193
+ self.use_cache = use_cache
194
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
195
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
196
+
197
+ self.bos_token_id = bos_token_id
198
+ self.eos_token_id = eos_token_id
199
+
200
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
201
+
202
+
203
+ class GPT2OnnxConfig(OnnxConfigWithPast):
204
+ def __init__(
205
+ self,
206
+ config: PretrainedConfig,
207
+ task: str = "default",
208
+ patching_specs: List[PatchingSpec] = None,
209
+ use_past: bool = False,
210
+ ):
211
+ super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
212
+ if not getattr(self._config, "pad_token_id", None):
213
+ # TODO: how to do that better?
214
+ self._config.pad_token_id = 0
215
+
216
+ @property
217
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
218
+ common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
219
+ if self.use_past:
220
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
221
+ common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
222
+ else:
223
+ common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
224
+
225
+ return common_inputs
226
+
227
+ @property
228
+ def num_layers(self) -> int:
229
+ return self._config.n_layer
230
+
231
+ @property
232
+ def num_attention_heads(self) -> int:
233
+ return self._config.n_head
234
+
235
+ def generate_dummy_inputs(
236
+ self,
237
+ tokenizer: PreTrainedTokenizer,
238
+ batch_size: int = -1,
239
+ seq_length: int = -1,
240
+ is_pair: bool = False,
241
+ framework: Optional[TensorType] = None,
242
+ ) -> Mapping[str, Any]:
243
+ common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
244
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
245
+ )
246
+
247
+ # We need to order the input in the way they appears in the forward()
248
+ ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
249
+
250
+ # Need to add the past_keys
251
+ if self.use_past:
252
+ if not is_torch_available():
253
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
254
+ else:
255
+ import torch
256
+
257
+ batch, seqlen = common_inputs["input_ids"].shape
258
+ # Not using the same length for past_key_values
259
+ past_key_values_length = seqlen + 2
260
+ past_shape = (
261
+ batch,
262
+ self.num_attention_heads,
263
+ past_key_values_length,
264
+ self._config.hidden_size // self.num_attention_heads,
265
+ )
266
+ ordered_inputs["past_key_values"] = [
267
+ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
268
+ ]
269
+
270
+ ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
271
+ if self.use_past:
272
+ mask_dtype = ordered_inputs["attention_mask"].dtype
273
+ ordered_inputs["attention_mask"] = torch.cat(
274
+ [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
275
+ )
276
+
277
+ return ordered_inputs
278
+
279
+ @property
280
+ def default_onnx_opset(self) -> int:
281
+ return 13
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.34.1"
6
+ }
modeling_gpt2a.py ADDED
@@ -0,0 +1,1810 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch OpenAI GPT-2 model."""
17
+
18
+ import math
19
+ import os
20
+ import warnings
21
+ from dataclasses import dataclass
22
+ from typing import Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ import torch.nn.functional as F
28
+ from torch.cuda.amp import autocast
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPastAndCrossAttentions,
34
+ CausalLMOutputWithCrossAttentions,
35
+ QuestionAnsweringModelOutput,
36
+ SequenceClassifierOutputWithPast,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel, SequenceSummary
40
+ from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_conv1d_layer
41
+ from transformers.utils import (
42
+ ModelOutput,
43
+ add_code_sample_docstrings,
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ logging,
47
+ replace_return_docstrings,
48
+ )
49
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
50
+ from .configuration_gpt2a import GPT2AConfig
51
+
52
+ class Conv1D(nn.Module):
53
+ """
54
+ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
55
+
56
+ Basically works like a linear layer but the weights are transposed.
57
+
58
+ Args:
59
+ nf (`int`): The number of output features.
60
+ nx (`int`): The number of input features.
61
+ """
62
+
63
+ def __init__(self, nf, nx, bias=True):
64
+ super().__init__()
65
+ self.nf = nf
66
+ self.weight = nn.Parameter(torch.empty(nx, nf))
67
+ self.bias = nn.Parameter(torch.zeros(nf)) if bias else None
68
+ nn.init.normal_(self.weight, std=0.02)
69
+
70
+ def forward(self, x):
71
+ size_out = x.size()[:-1] + (self.nf,)
72
+ # i think this is right?
73
+ if self.bias is not None:
74
+ x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
75
+ else:
76
+ x = torch.mm(x.view(-1, x.size(-1)),self.weight)
77
+ x = x.view(size_out)
78
+ return x
79
+
80
+ logger = logging.get_logger(__name__)
81
+
82
+ _CHECKPOINT_FOR_DOC = "gpt2"
83
+ _CONFIG_FOR_DOC = "GPT2AConfig"
84
+
85
+ GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
86
+ "gpt2",
87
+ "gpt2-medium",
88
+ "gpt2-large",
89
+ "gpt2-xl",
90
+ "distilgpt2",
91
+ # See all GPT-2 models at https://huggingface.co/models?filter=gpt2
92
+ ]
93
+
94
+ import torch
95
+ import math
96
+
97
+ from typing import Tuple
98
+ from einops import repeat
99
+
100
+ # module partially stolen from pytorch examples:
101
+ class SinusoidalPositional(torch.nn.Module):
102
+ r"""Inject some information about the relative or absolute position of the tokens
103
+ in the sequence. The positional encodings have the same dimension as
104
+ the embeddings, so that the two can be summed. Here, we use sine and cosine
105
+ functions of different frequencies.
106
+ """
107
+
108
+ def __init__(self, embedding_dim, max_seq_length=5000):
109
+ super().__init__()
110
+
111
+ pe = torch.zeros(max_seq_length, embedding_dim)
112
+ position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
113
+ div_term = torch.exp(torch.arange(0, embedding_dim, 2).float() * (-math.log(10000.0) / embedding_dim))
114
+ pe[:, 0::2] = torch.sin(position * div_term)
115
+ pe[:, 1::2] = torch.cos(position * div_term)
116
+
117
+ pe = pe.unsqueeze(0)
118
+ self.register_buffer("pe", pe, persistent=False)
119
+
120
+ def forward(self, input_ids):
121
+ r"""Inputs of forward function
122
+ Args:
123
+ x: the sequence fed to the positional encoder model (required).
124
+ Shape:
125
+ x: [batch size, sequence length, embed dim]
126
+ output: [batch size, sequence length, embed dim]
127
+ Examples:
128
+ >>> output = pos_encoder(x)
129
+ """
130
+ return self.pe[:, : input_ids.shape[1], :]
131
+
132
+
133
+ class ScaledSinusoidal(SinusoidalPositional):
134
+ """Sinusoidal with scaling (see FLASH paper)."""
135
+
136
+ def __init__(self, embedding_dim, max_seq_length):
137
+ super().__init__(embedding_dim, max_seq_length)
138
+ self.scale_factor = torch.nn.Parameter(torch.tensor([1.0 / embedding_dim**0.5]))
139
+
140
+ def forward(self, input_ids):
141
+ r"""Inputs of forward function
142
+ Args:
143
+ x: the sequence fed to the positional encoder model (required).
144
+ Shape:
145
+ x: [batch size, sequence length, embed dim]
146
+ output: [batch size, sequence length, embed dim]
147
+ Examples:
148
+ >>> output = pos_encoder(x)
149
+ """
150
+ return self.scale_factor * self.pe[:, : input_ids.shape[1], :]
151
+
152
+
153
+ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
154
+ """Load tf checkpoints in a pytorch model"""
155
+ try:
156
+ import re
157
+
158
+ import tensorflow as tf
159
+ except ImportError:
160
+ logger.error(
161
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
162
+ "https://www.tensorflow.org/install/ for installation instructions."
163
+ )
164
+ raise
165
+ tf_path = os.path.abspath(gpt2_checkpoint_path)
166
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
167
+ # Load weights from TF model
168
+ init_vars = tf.train.list_variables(tf_path)
169
+ names = []
170
+ arrays = []
171
+ for name, shape in init_vars:
172
+ logger.info(f"Loading TF weight {name} with shape {shape}")
173
+ array = tf.train.load_variable(tf_path, name)
174
+ names.append(name)
175
+ arrays.append(array.squeeze())
176
+
177
+ for name, array in zip(names, arrays):
178
+ name = name[6:] # skip "model/"
179
+ name = name.split("/")
180
+ pointer = model
181
+ for m_name in name:
182
+ if re.fullmatch(r"[A-Za-z]+\d+", m_name):
183
+ scope_names = re.split(r"(\d+)", m_name)
184
+ else:
185
+ scope_names = [m_name]
186
+ if scope_names[0] == "w" or scope_names[0] == "g":
187
+ pointer = getattr(pointer, "weight")
188
+ elif scope_names[0] == "b":
189
+ pointer = getattr(pointer, "bias")
190
+ elif scope_names[0] == "wpe" or scope_names[0] == "wte":
191
+ pointer = getattr(pointer, scope_names[0])
192
+ pointer = getattr(pointer, "weight")
193
+ else:
194
+ pointer = getattr(pointer, scope_names[0])
195
+ if len(scope_names) >= 2:
196
+ num = int(scope_names[1])
197
+ pointer = pointer[num]
198
+ try:
199
+ if pointer.shape != array.shape:
200
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
201
+ except ValueError as e:
202
+ e.args += (pointer.shape, array.shape)
203
+ raise
204
+ logger.info(f"Initialize PyTorch weight {name}")
205
+ pointer.data = torch.from_numpy(array)
206
+ return model
207
+
208
+
209
+ class GPT2AAttention(nn.Module):
210
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
211
+ super().__init__()
212
+
213
+ max_positions = config.max_position_embeddings
214
+ self.register_buffer(
215
+ "bias",
216
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
217
+ 1, 1, max_positions, max_positions
218
+ ),
219
+ persistent=False,
220
+ )
221
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
222
+
223
+ self.embed_dim = config.hidden_size
224
+ self.num_heads = config.num_attention_heads
225
+ self.head_dim = self.embed_dim // self.num_heads
226
+ self.split_size = self.embed_dim
227
+ if self.head_dim * self.num_heads != self.embed_dim:
228
+ raise ValueError(
229
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
230
+ f" {self.num_heads})."
231
+ )
232
+
233
+ self.scale_attn_weights = config.scale_attn_weights
234
+ self.is_cross_attention = is_cross_attention
235
+
236
+ # Layer-wise attention scaling, reordering, and upcasting
237
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
238
+ self.layer_idx = layer_idx
239
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
240
+
241
+ if self.is_cross_attention:
242
+ self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim, bias=config.attn_bias)
243
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim, bias=config.attn_bias)
244
+ else:
245
+ self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim, bias=config.attn_bias)
246
+ self.c_proj = Conv1D(self.embed_dim, self.embed_dim, bias=config.attn_bias)
247
+
248
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
249
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
250
+
251
+ self.pruned_heads = set()
252
+
253
+ def prune_heads(self, heads):
254
+ if len(heads) == 0:
255
+ return
256
+ heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
257
+ index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
258
+
259
+ # Prune conv1d layers
260
+ self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
261
+ self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
262
+
263
+ # Update hyper params
264
+ self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
265
+ self.num_heads = self.num_heads - len(heads)
266
+ self.pruned_heads = self.pruned_heads.union(heads)
267
+
268
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
269
+ # attn_weights = torch.matmul(query, key.transpose(-1, -2))
270
+
271
+ # if self.scale_attn_weights:
272
+ # attn_weights = attn_weights / torch.full(
273
+ # [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
274
+ # )
275
+
276
+ # # Layer-wise attention scaling
277
+ # if self.scale_attn_by_inverse_layer_idx:
278
+ # attn_weights = attn_weights / float(self.layer_idx + 1)
279
+
280
+ # if not self.is_cross_attention:
281
+ # # if only "normal" attention layer implements causal mask
282
+ # query_length, key_length = query.size(-2), key.size(-2)
283
+ # causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
284
+ # mask_value = torch.finfo(attn_weights.dtype).min
285
+ # # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
286
+ # # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
287
+ # mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
288
+ # attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
289
+
290
+ # if attention_mask is not None:
291
+ # # Apply the attention mask
292
+ # attn_weights = attn_weights + attention_mask
293
+
294
+ # attn_weights = nn.functional.softmax(attn_weights, dim=-1)
295
+
296
+ # # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
297
+ # attn_weights = attn_weights.type(value.dtype)
298
+ # attn_weights = self.attn_dropout(attn_weights)
299
+
300
+ # # Mask heads if we want to
301
+ # if head_mask is not None:
302
+ # attn_weights = attn_weights * head_mask
303
+
304
+ # attn_output = torch.matmul(attn_weights, value)
305
+
306
+ # return attn_output, attn_weights
307
+ return F.scaled_dot_product_attention(query, key, value, is_causal=True), None
308
+
309
+ def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
310
+ # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
311
+ bsz, num_heads, q_seq_len, dk = query.size()
312
+ _, _, k_seq_len, _ = key.size()
313
+
314
+ # Preallocate attn_weights for `baddbmm`
315
+ attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
316
+
317
+ # Compute Scale Factor
318
+ scale_factor = 1.0
319
+ if self.scale_attn_weights:
320
+ scale_factor /= float(value.size(-1)) ** 0.5
321
+
322
+ if self.scale_attn_by_inverse_layer_idx:
323
+ scale_factor /= float(self.layer_idx + 1)
324
+
325
+ # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
326
+ with autocast(enabled=False):
327
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
328
+ attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
329
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
330
+
331
+ if not self.is_cross_attention:
332
+ # if only "normal" attention layer implements causal mask
333
+ query_length, key_length = query.size(-2), key.size(-2)
334
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
335
+ mask_value = torch.finfo(attn_weights.dtype).min
336
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
337
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
338
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
339
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
340
+
341
+ if attention_mask is not None:
342
+ # Apply the attention mask
343
+ attn_weights = attn_weights + attention_mask
344
+
345
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
346
+
347
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
348
+ if attn_weights.dtype != torch.float32:
349
+ raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
350
+ attn_weights = attn_weights.type(value.dtype)
351
+ attn_weights = self.attn_dropout(attn_weights)
352
+
353
+ # Mask heads if we want to
354
+ if head_mask is not None:
355
+ attn_weights = attn_weights * head_mask
356
+
357
+ attn_output = torch.matmul(attn_weights, value)
358
+
359
+ return attn_output, attn_weights
360
+
361
+ def _split_heads(self, tensor, num_heads, attn_head_size):
362
+ """
363
+ Splits hidden_size dim into attn_head_size and num_heads
364
+ """
365
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
366
+ tensor = tensor.view(new_shape)
367
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
368
+
369
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
370
+ """
371
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
372
+ """
373
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
374
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
375
+ return tensor.view(new_shape)
376
+
377
+ def forward(
378
+ self,
379
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
380
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
381
+ attention_mask: Optional[torch.FloatTensor] = None,
382
+ head_mask: Optional[torch.FloatTensor] = None,
383
+ encoder_hidden_states: Optional[torch.Tensor] = None,
384
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
385
+ use_cache: Optional[bool] = False,
386
+ output_attentions: Optional[bool] = False,
387
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
388
+ if encoder_hidden_states is not None:
389
+ if not hasattr(self, "q_attn"):
390
+ raise ValueError(
391
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
392
+ "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
393
+ )
394
+
395
+ query = self.q_attn(hidden_states)
396
+ key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
397
+ attention_mask = encoder_attention_mask
398
+ else:
399
+ query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
400
+
401
+ query = self._split_heads(query, self.num_heads, self.head_dim)
402
+ key = self._split_heads(key, self.num_heads, self.head_dim)
403
+ value = self._split_heads(value, self.num_heads, self.head_dim)
404
+
405
+ if layer_past is not None:
406
+ past_key, past_value = layer_past
407
+ key = torch.cat((past_key, key), dim=-2)
408
+ value = torch.cat((past_value, value), dim=-2)
409
+
410
+ if use_cache is True:
411
+ present = (key, value)
412
+ else:
413
+ present = None
414
+
415
+ if self.reorder_and_upcast_attn:
416
+ attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
417
+ else:
418
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
419
+
420
+ attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
421
+ attn_output = self.c_proj(attn_output)
422
+ attn_output = self.resid_dropout(attn_output)
423
+
424
+ outputs = (attn_output, present)
425
+ if output_attentions:
426
+ outputs += (attn_weights,)
427
+
428
+ return outputs # a, present, (attentions)
429
+
430
+
431
+ class GPT2AMLP(nn.Module):
432
+ def __init__(self, intermediate_size, config):
433
+ super().__init__()
434
+ embed_dim = config.hidden_size
435
+ self.c_fc = Conv1D(intermediate_size, embed_dim, bias=config.mlp_bias)
436
+ self.c_proj = Conv1D(embed_dim, intermediate_size, bias=config.mlp_bias)
437
+ self.act = ACT2FN[config.activation_function]
438
+ self.dropout = nn.Dropout(config.resid_pdrop)
439
+
440
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
441
+ hidden_states = self.c_fc(hidden_states)
442
+ hidden_states = self.act(hidden_states)
443
+ hidden_states = self.c_proj(hidden_states)
444
+ hidden_states = self.dropout(hidden_states)
445
+ return hidden_states
446
+
447
+
448
+ class GPT2ABlock(nn.Module):
449
+ def __init__(self, config, layer_idx=None):
450
+ super().__init__()
451
+ hidden_size = config.hidden_size
452
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
453
+
454
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
455
+ self.attn = GPT2AAttention(config, layer_idx=layer_idx)
456
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
457
+
458
+ if config.add_cross_attention:
459
+ self.crossattention = GPT2AAttention(config, is_cross_attention=True, layer_idx=layer_idx)
460
+ self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
461
+
462
+ self.mlp = GPT2AMLP(inner_dim, config)
463
+
464
+ def forward(
465
+ self,
466
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
467
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
468
+ attention_mask: Optional[torch.FloatTensor] = None,
469
+ head_mask: Optional[torch.FloatTensor] = None,
470
+ encoder_hidden_states: Optional[torch.Tensor] = None,
471
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
472
+ use_cache: Optional[bool] = False,
473
+ output_attentions: Optional[bool] = False,
474
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
475
+ residual = hidden_states
476
+ hidden_states = self.ln_1(hidden_states)
477
+ attn_outputs = self.attn(
478
+ hidden_states,
479
+ layer_past=layer_past,
480
+ attention_mask=attention_mask,
481
+ head_mask=head_mask,
482
+ use_cache=use_cache,
483
+ output_attentions=output_attentions,
484
+ )
485
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
486
+ outputs = attn_outputs[1:]
487
+ # residual connection
488
+ hidden_states = attn_output + residual
489
+
490
+ if encoder_hidden_states is not None:
491
+ # add one self-attention block for cross-attention
492
+ if not hasattr(self, "crossattention"):
493
+ raise ValueError(
494
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
495
+ "cross-attention layers by setting `config.add_cross_attention=True`"
496
+ )
497
+ residual = hidden_states
498
+ hidden_states = self.ln_cross_attn(hidden_states)
499
+ cross_attn_outputs = self.crossattention(
500
+ hidden_states,
501
+ attention_mask=attention_mask,
502
+ head_mask=head_mask,
503
+ encoder_hidden_states=encoder_hidden_states,
504
+ encoder_attention_mask=encoder_attention_mask,
505
+ output_attentions=output_attentions,
506
+ )
507
+ attn_output = cross_attn_outputs[0]
508
+ # residual connection
509
+ hidden_states = residual + attn_output
510
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
511
+
512
+ residual = hidden_states
513
+ hidden_states = self.ln_2(hidden_states)
514
+ feed_forward_hidden_states = self.mlp(hidden_states)
515
+ # residual connection
516
+ hidden_states = residual + feed_forward_hidden_states
517
+
518
+ if use_cache:
519
+ outputs = (hidden_states,) + outputs
520
+ else:
521
+ outputs = (hidden_states,) + outputs[1:]
522
+
523
+ return outputs # hidden_states, present, (attentions, cross_attentions)
524
+
525
+
526
+ class GPT2APreTrainedModel(PreTrainedModel):
527
+ """
528
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
529
+ models.
530
+ """
531
+
532
+ config_class = GPT2AConfig
533
+ load_tf_weights = load_tf_weights_in_gpt2
534
+ base_model_prefix = "transformer"
535
+ is_parallelizable = True
536
+ supports_gradient_checkpointing = True
537
+ _no_split_modules = ["GPT2ABlock"]
538
+ _skip_keys_device_placement = "past_key_values"
539
+
540
+ def __init__(self, *inputs, **kwargs):
541
+ super().__init__(*inputs, **kwargs)
542
+
543
+ def _init_weights(self, module):
544
+ """Initialize the weights."""
545
+ if isinstance(module, (nn.Linear, Conv1D)):
546
+ # Slightly different from the TF version which uses truncated_normal for initialization
547
+ # cf https://github.com/pytorch/pytorch/pull/5617
548
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
549
+ if module.bias is not None:
550
+ module.bias.data.zero_()
551
+ elif isinstance(module, nn.Embedding):
552
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
553
+ if module.padding_idx is not None:
554
+ module.weight.data[module.padding_idx].zero_()
555
+ elif isinstance(module, nn.LayerNorm):
556
+ module.bias.data.zero_()
557
+ module.weight.data.fill_(1.0)
558
+
559
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
560
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
561
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
562
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
563
+ #
564
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
565
+ for name, p in module.named_parameters():
566
+ if name == "c_proj.weight":
567
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
568
+ p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
569
+
570
+ def _set_gradient_checkpointing(self, module, value=False):
571
+ if isinstance(module, GPT2AModel):
572
+ module.gradient_checkpointing = value
573
+
574
+
575
+ @dataclass
576
+ class GPT2ADoubleHeadsModelOutput(ModelOutput):
577
+ """
578
+ Base class for outputs of models predicting if two sentences are consecutive or not.
579
+
580
+ Args:
581
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
582
+ Language modeling loss.
583
+ mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
584
+ Multiple choice classification loss.
585
+ logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
586
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
587
+ mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
588
+ Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
589
+ past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
590
+ Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
591
+ sequence_length, embed_size_per_head)`).
592
+
593
+ Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
594
+ `past_key_values` input) to speed up sequential decoding.
595
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
596
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
597
+ shape `(batch_size, sequence_length, hidden_size)`.
598
+
599
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
600
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
601
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
602
+ sequence_length)`.
603
+
604
+ GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
605
+ self-attention heads.
606
+ """
607
+
608
+ loss: Optional[torch.FloatTensor] = None
609
+ mc_loss: Optional[torch.FloatTensor] = None
610
+ logits: torch.FloatTensor = None
611
+ mc_logits: torch.FloatTensor = None
612
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
613
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
614
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
615
+
616
+
617
+ GPT2_START_DOCSTRING = r"""
618
+
619
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
620
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
621
+ etc.)
622
+
623
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
624
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
625
+ and behavior.
626
+
627
+ Parameters:
628
+ config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
629
+ Initializing with a config file does not load the weights associated with the model, only the
630
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
631
+ """
632
+
633
+ GPT2_INPUTS_DOCSTRING = r"""
634
+ Args:
635
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
636
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
637
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
638
+ sequence tokens in the vocabulary.
639
+
640
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
641
+ `input_ids`.
642
+
643
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
644
+ [`PreTrainedTokenizer.__call__`] for details.
645
+
646
+ [What are input IDs?](../glossary#input-ids)
647
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
648
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
649
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
650
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
651
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
652
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
653
+
654
+ - 1 for tokens that are **not masked**,
655
+ - 0 for tokens that are **masked**.
656
+
657
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
658
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
659
+ `len(past_key_values) + len(input_ids)`
660
+
661
+ [What are attention masks?](../glossary#attention-mask)
662
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
663
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
664
+ 1]`:
665
+
666
+ - 0 corresponds to a *sentence A* token,
667
+ - 1 corresponds to a *sentence B* token.
668
+
669
+ [What are token type IDs?](../glossary#token-type-ids)
670
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
671
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
672
+ config.max_position_embeddings - 1]`.
673
+
674
+ [What are position IDs?](../glossary#position-ids)
675
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
676
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
677
+
678
+ - 1 indicates the head is **not masked**,
679
+ - 0 indicates the head is **masked**.
680
+
681
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
682
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
683
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
684
+ model's internal embedding lookup matrix.
685
+
686
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
687
+ `past_key_values`).
688
+ use_cache (`bool`, *optional*):
689
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
690
+ `past_key_values`).
691
+ output_attentions (`bool`, *optional*):
692
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
693
+ tensors for more detail.
694
+ output_hidden_states (`bool`, *optional*):
695
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
696
+ more detail.
697
+ return_dict (`bool`, *optional*):
698
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
699
+ """
700
+ PARALLELIZE_DOCSTRING = r"""
701
+ This is an experimental feature and is a subject to change at a moment's notice.
702
+
703
+ Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
704
+ it will evenly distribute blocks across all devices.
705
+
706
+ Args:
707
+ device_map (`Dict[int, list]`, optional, defaults to None):
708
+ A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
709
+ automatically mapped to the first device (for esoteric reasons). That means that the first device should
710
+ have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
711
+ following number of attention modules:
712
+
713
+ - gpt2: 12
714
+ - gpt2-medium: 24
715
+ - gpt2-large: 36
716
+ - gpt2-xl: 48
717
+
718
+ Example:
719
+
720
+ ```python
721
+ # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
722
+ model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
723
+ device_map = {
724
+ 0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
725
+ 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
726
+ 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
727
+ 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
728
+ }
729
+ model.parallelize(device_map)
730
+ ```
731
+ """
732
+ DEPARALLELIZE_DOCSTRING = r"""
733
+ Moves the model to cpu from a model parallel state.
734
+
735
+ Example:
736
+
737
+ ```python
738
+ # On a 4 GPU machine with gpt2-large:
739
+ model = GPT2LMHeadModel.from_pretrained("gpt2-large")
740
+ device_map = {
741
+ 0: [0, 1, 2, 3, 4, 5, 6, 7],
742
+ 1: [8, 9, 10, 11, 12, 13, 14, 15],
743
+ 2: [16, 17, 18, 19, 20, 21, 22, 23],
744
+ 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
745
+ }
746
+ model.parallelize(device_map) # Splits the model across several devices
747
+ model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
748
+ ```
749
+ """
750
+
751
+
752
+ @add_start_docstrings(
753
+ "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
754
+ GPT2_START_DOCSTRING,
755
+ )
756
+ class GPT2AModel(GPT2APreTrainedModel):
757
+ def __init__(self, config):
758
+ super().__init__(config)
759
+
760
+ self.embed_dim = config.hidden_size
761
+
762
+ # self.wte = nn.Embedding(config.vocab_size + config.thoughts, self.embed_dim)
763
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
764
+ self.wpe = ScaledSinusoidal(self.embed_dim, config.max_position_embeddings)
765
+ self.wln = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
766
+
767
+ self.drop = nn.Dropout(config.embd_pdrop)
768
+ self.h = nn.ModuleList([GPT2ABlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
769
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
770
+
771
+ # Model parallel
772
+ self.model_parallel = False
773
+ self.device_map = None
774
+ self.gradient_checkpointing = False
775
+
776
+ # Initialize weights and apply final processing
777
+ self.post_init()
778
+
779
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
780
+ def parallelize(self, device_map=None):
781
+ # Check validity of device_map
782
+ warnings.warn(
783
+ "`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
784
+ " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
785
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
786
+ " ...}",
787
+ FutureWarning,
788
+ )
789
+ self.device_map = (
790
+ get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
791
+ )
792
+ assert_device_map(self.device_map, len(self.h))
793
+ self.model_parallel = True
794
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
795
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
796
+ self.wte = self.wte.to(self.first_device)
797
+ self.wpe = self.wpe.to(self.first_device)
798
+ self.wln = self.wln.to(self.first_device)
799
+ # Load onto devices
800
+ for k, v in self.device_map.items():
801
+ for block in v:
802
+ cuda_device = "cuda:" + str(k)
803
+ self.h[block] = self.h[block].to(cuda_device)
804
+ # ln_f to last
805
+ self.ln_f = self.ln_f.to(self.last_device)
806
+
807
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
808
+ def deparallelize(self):
809
+ warnings.warn(
810
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
811
+ FutureWarning,
812
+ )
813
+ self.model_parallel = False
814
+ self.device_map = None
815
+ self.first_device = "cpu"
816
+ self.last_device = "cpu"
817
+ self.wte = self.wte.to("cpu")
818
+ self.wpe = self.wpe.to("cpu")
819
+ self.wln = self.wln.to("cpu")
820
+ for index in range(len(self.h)):
821
+ self.h[index] = self.h[index].to("cpu")
822
+ self.ln_f = self.ln_f.to("cpu")
823
+ torch.cuda.empty_cache()
824
+
825
+ def get_input_embeddings(self):
826
+ return self.wte
827
+
828
+ def set_input_embeddings(self, new_embeddings):
829
+ self.wte = new_embeddings
830
+
831
+ def _prune_heads(self, heads_to_prune):
832
+ """
833
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
834
+ """
835
+ for layer, heads in heads_to_prune.items():
836
+ self.h[layer].attn.prune_heads(heads)
837
+
838
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
839
+ @add_code_sample_docstrings(
840
+ checkpoint=_CHECKPOINT_FOR_DOC,
841
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
842
+ config_class=_CONFIG_FOR_DOC,
843
+ )
844
+ def forward(
845
+ self,
846
+ input_ids: Optional[torch.LongTensor] = None,
847
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
848
+ attention_mask: Optional[torch.FloatTensor] = None,
849
+ token_type_ids: Optional[torch.LongTensor] = None,
850
+ position_ids: Optional[torch.LongTensor] = None,
851
+ head_mask: Optional[torch.FloatTensor] = None,
852
+ inputs_embeds: Optional[torch.FloatTensor] = None,
853
+ encoder_hidden_states: Optional[torch.Tensor] = None,
854
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
855
+ use_cache: Optional[bool] = None,
856
+ output_attentions: Optional[bool] = None,
857
+ output_hidden_states: Optional[bool] = None,
858
+ return_dict: Optional[bool] = None,
859
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
860
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
861
+ output_hidden_states = (
862
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
863
+ )
864
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
865
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
866
+
867
+ if input_ids is not None and inputs_embeds is not None:
868
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
869
+ elif input_ids is not None:
870
+
871
+ # scratch inefficient thought logic goes here
872
+ # input_ids = input_ids.tolist()
873
+ # final_ids = []
874
+ # for sequence in input_ids:
875
+ # median_inputs = []
876
+ # for id in sequence:
877
+ # median_inputs.append(id)
878
+ # for i in range(self.config.thoughts):
879
+ # median_inputs.append(self.config.vocab_size + i)
880
+ # final_ids.append(median_inputs)
881
+ # input_ids = torch.tensor(final_ids).long()
882
+ # ---
883
+
884
+ # screw you
885
+ # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
886
+ input_shape = input_ids.size()
887
+ input_ids = input_ids.view(-1, input_shape[-1])
888
+ batch_size = input_ids.shape[0]
889
+
890
+
891
+ elif inputs_embeds is not None:
892
+ input_shape = inputs_embeds.size()[:-1]
893
+ batch_size = inputs_embeds.shape[0]
894
+ else:
895
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
896
+
897
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
898
+
899
+ if token_type_ids is not None:
900
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
901
+ if position_ids is not None:
902
+ position_ids = position_ids.view(-1, input_shape[-1])
903
+
904
+ if past_key_values is None:
905
+ past_length = 0
906
+ past_key_values = tuple([None] * len(self.h))
907
+ else:
908
+ past_length = past_key_values[0][0].size(-2)
909
+ if position_ids is None:
910
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
911
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
912
+
913
+ # GPT2Attention mask.
914
+ if attention_mask is not None:
915
+ if batch_size <= 0:
916
+ raise ValueError("batch_size has to be defined and > 0")
917
+ attention_mask = attention_mask.view(batch_size, -1)
918
+ # We create a 3D attention mask from a 2D tensor mask.
919
+ # Sizes are [batch_size, 1, 1, to_seq_length]
920
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
921
+ # this attention mask is more simple than the triangular masking of causal attention
922
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
923
+ attention_mask = attention_mask[:, None, None, :]
924
+
925
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
926
+ # masked positions, this operation will create a tensor which is 0.0 for
927
+ # positions we want to attend and the dtype's smallest value for masked positions.
928
+ # Since we are adding it to the raw scores before the softmax, this is
929
+ # effectively the same as removing these entirely.
930
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
931
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
932
+
933
+ # If a 2D or 3D attention mask is provided for the cross-attention
934
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
935
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
936
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
937
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
938
+ if encoder_attention_mask is None:
939
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
940
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
941
+ else:
942
+ encoder_attention_mask = None
943
+
944
+ # Prepare head mask if needed
945
+ # 1.0 in head_mask indicate we keep the head
946
+ # attention_probs has shape bsz x n_heads x N x N
947
+ # head_mask has shape n_layer x batch x n_heads x N x N
948
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
949
+
950
+ if inputs_embeds is None:
951
+ inputs_embeds = self.wte(input_ids)
952
+ position_embeds = self.wpe(input_ids)
953
+ hidden_states = inputs_embeds + position_embeds
954
+ hidden_states = self.wln(hidden_states)
955
+
956
+ if token_type_ids is not None:
957
+ token_type_embeds = self.wte(token_type_ids)
958
+ hidden_states = hidden_states + token_type_embeds
959
+
960
+ hidden_states = self.drop(hidden_states)
961
+
962
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
963
+
964
+ if self.gradient_checkpointing and self.training:
965
+ if use_cache:
966
+ logger.warning_once(
967
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
968
+ )
969
+ use_cache = False
970
+
971
+ presents = () if use_cache else None
972
+ all_self_attentions = () if output_attentions else None
973
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
974
+ all_hidden_states = () if output_hidden_states else None
975
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
976
+ # Model parallel
977
+ if self.model_parallel:
978
+ torch.cuda.set_device(hidden_states.device)
979
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
980
+ if layer_past is not None:
981
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
982
+ # Ensure that attention_mask is always on the same device as hidden_states
983
+ if attention_mask is not None:
984
+ attention_mask = attention_mask.to(hidden_states.device)
985
+ if isinstance(head_mask, torch.Tensor):
986
+ head_mask = head_mask.to(hidden_states.device)
987
+ if output_hidden_states:
988
+ all_hidden_states = all_hidden_states + (hidden_states,)
989
+
990
+ if self.gradient_checkpointing and self.training:
991
+
992
+ def create_custom_forward(module):
993
+ def custom_forward(*inputs):
994
+ # None for past_key_value
995
+ return module(*inputs, use_cache, output_attentions)
996
+
997
+ return custom_forward
998
+
999
+ outputs = torch.utils.checkpoint.checkpoint(
1000
+ create_custom_forward(block),
1001
+ hidden_states,
1002
+ None,
1003
+ attention_mask,
1004
+ head_mask[i],
1005
+ encoder_hidden_states,
1006
+ encoder_attention_mask,
1007
+ )
1008
+ else:
1009
+ outputs = block(
1010
+ hidden_states,
1011
+ layer_past=layer_past,
1012
+ attention_mask=attention_mask,
1013
+ head_mask=head_mask[i],
1014
+ encoder_hidden_states=encoder_hidden_states,
1015
+ encoder_attention_mask=encoder_attention_mask,
1016
+ use_cache=use_cache,
1017
+ output_attentions=output_attentions,
1018
+ )
1019
+
1020
+ hidden_states = outputs[0]
1021
+ if use_cache is True:
1022
+ presents = presents + (outputs[1],)
1023
+
1024
+ if output_attentions:
1025
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
1026
+ if self.config.add_cross_attention:
1027
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
1028
+
1029
+ # Model Parallel: If it's the last layer for that device, put things on the next device
1030
+ if self.model_parallel:
1031
+ for k, v in self.device_map.items():
1032
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
1033
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
1034
+
1035
+ hidden_states = self.ln_f(hidden_states)
1036
+
1037
+ hidden_states = hidden_states.view(output_shape)
1038
+ # Add last hidden state
1039
+ if output_hidden_states:
1040
+ all_hidden_states = all_hidden_states + (hidden_states,)
1041
+
1042
+ if not return_dict:
1043
+ return tuple(
1044
+ v
1045
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
1046
+ if v is not None
1047
+ )
1048
+
1049
+ return BaseModelOutputWithPastAndCrossAttentions(
1050
+ last_hidden_state=hidden_states,
1051
+ past_key_values=presents,
1052
+ hidden_states=all_hidden_states,
1053
+ attentions=all_self_attentions,
1054
+ cross_attentions=all_cross_attentions,
1055
+ )
1056
+
1057
+
1058
+ @add_start_docstrings(
1059
+ """
1060
+ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
1061
+ embeddings).
1062
+ """,
1063
+ GPT2_START_DOCSTRING,
1064
+ )
1065
+ class GPT2ALMHeadModel(GPT2APreTrainedModel):
1066
+ _tied_weights_keys = ["lm_head.weight"]
1067
+
1068
+ def __init__(self, config):
1069
+ super().__init__(config)
1070
+ self.transformer = GPT2AModel(config)
1071
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
1072
+
1073
+ # Model parallel
1074
+ self.model_parallel = False
1075
+ self.device_map = None
1076
+
1077
+ # Initialize weights and apply final processing
1078
+ self.post_init()
1079
+
1080
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
1081
+ def parallelize(self, device_map=None):
1082
+ warnings.warn(
1083
+ "`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
1084
+ " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
1085
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
1086
+ " 0, 'transformer.h.1': 1, ...}",
1087
+ FutureWarning,
1088
+ )
1089
+ self.device_map = (
1090
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
1091
+ if device_map is None
1092
+ else device_map
1093
+ )
1094
+ assert_device_map(self.device_map, len(self.transformer.h))
1095
+ self.transformer.parallelize(self.device_map)
1096
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
1097
+ self.model_parallel = True
1098
+
1099
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
1100
+ def deparallelize(self):
1101
+ warnings.warn(
1102
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
1103
+ FutureWarning,
1104
+ )
1105
+ self.transformer.deparallelize()
1106
+ self.transformer = self.transformer.to("cpu")
1107
+ self.lm_head = self.lm_head.to("cpu")
1108
+ self.model_parallel = False
1109
+ torch.cuda.empty_cache()
1110
+
1111
+ def get_output_embeddings(self):
1112
+ return self.lm_head
1113
+
1114
+ def set_output_embeddings(self, new_embeddings):
1115
+ self.lm_head = new_embeddings
1116
+
1117
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
1118
+ token_type_ids = kwargs.get("token_type_ids", None)
1119
+ # only last token for inputs_ids if past is defined in kwargs
1120
+ if past_key_values:
1121
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1122
+ if token_type_ids is not None:
1123
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1124
+
1125
+ attention_mask = kwargs.get("attention_mask", None)
1126
+
1127
+ position_ids = kwargs.get("position_ids", None)
1128
+
1129
+ if attention_mask is not None and position_ids is None:
1130
+ # create position_ids on the fly for batch generation
1131
+ position_ids = attention_mask.long().cumsum(-1) - 1
1132
+ position_ids.masked_fill_(attention_mask == 0, 1)
1133
+ if past_key_values:
1134
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1135
+ else:
1136
+ position_ids = None
1137
+
1138
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1139
+ if inputs_embeds is not None and past_key_values is None:
1140
+ model_inputs = {"inputs_embeds": inputs_embeds}
1141
+ else:
1142
+ model_inputs = {"input_ids": input_ids}
1143
+
1144
+ model_inputs.update(
1145
+ {
1146
+ "past_key_values": past_key_values,
1147
+ "use_cache": kwargs.get("use_cache"),
1148
+ "position_ids": position_ids,
1149
+ "attention_mask": attention_mask,
1150
+ "token_type_ids": token_type_ids,
1151
+ }
1152
+ )
1153
+ return model_inputs
1154
+
1155
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1156
+ @add_code_sample_docstrings(
1157
+ checkpoint=_CHECKPOINT_FOR_DOC,
1158
+ output_type=CausalLMOutputWithCrossAttentions,
1159
+ config_class=_CONFIG_FOR_DOC,
1160
+ )
1161
+ def forward(
1162
+ self,
1163
+ input_ids: Optional[torch.LongTensor] = None,
1164
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1165
+ attention_mask: Optional[torch.FloatTensor] = None,
1166
+ token_type_ids: Optional[torch.LongTensor] = None,
1167
+ position_ids: Optional[torch.LongTensor] = None,
1168
+ head_mask: Optional[torch.FloatTensor] = None,
1169
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1170
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1171
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1172
+ labels: Optional[torch.LongTensor] = None,
1173
+ use_cache: Optional[bool] = None,
1174
+ output_attentions: Optional[bool] = None,
1175
+ output_hidden_states: Optional[bool] = None,
1176
+ return_dict: Optional[bool] = None,
1177
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1178
+ r"""
1179
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1180
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1181
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1182
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1183
+ """
1184
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1185
+
1186
+ transformer_outputs = self.transformer(
1187
+ input_ids,
1188
+ past_key_values=past_key_values,
1189
+ attention_mask=attention_mask,
1190
+ token_type_ids=token_type_ids,
1191
+ position_ids=position_ids,
1192
+ head_mask=head_mask,
1193
+ inputs_embeds=inputs_embeds,
1194
+ encoder_hidden_states=encoder_hidden_states,
1195
+ encoder_attention_mask=encoder_attention_mask,
1196
+ use_cache=use_cache,
1197
+ output_attentions=output_attentions,
1198
+ output_hidden_states=output_hidden_states,
1199
+ return_dict=return_dict,
1200
+ )
1201
+ hidden_states = transformer_outputs[0]
1202
+
1203
+ # Set device for model parallelism
1204
+ if self.model_parallel:
1205
+ torch.cuda.set_device(self.transformer.first_device)
1206
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
1207
+
1208
+ lm_logits = self.lm_head(hidden_states)
1209
+ # indices = torch.arange(1, _lm_logits.size(1), self.config.thoughts+1).long()
1210
+ # lm_logits = _lm_logits[:,indices,:]
1211
+
1212
+ # starting_indices = torch.arange(1, _lm_logits.size(1), self.config.thoughts+1).long()
1213
+ # selected_logits_list = [_lm_logits[:,idx:idx+self.config.thoughts,:] for idx in starting_indices]
1214
+ # lm_logits = torch.cat(selected_logits_list, dim=1)
1215
+
1216
+
1217
+ loss = None
1218
+ if labels is not None:
1219
+ # move labels to correct device to enable model parallelism
1220
+ labels = labels.to(lm_logits.device)
1221
+ # Shift so that tokens < n predict n
1222
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1223
+ shift_labels = labels[..., 1:].contiguous()
1224
+ # Flatten the tokens
1225
+ loss_fct = CrossEntropyLoss()
1226
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1227
+
1228
+ if not return_dict:
1229
+ output = (lm_logits,) + transformer_outputs[1:]
1230
+ return ((loss,) + output) if loss is not None else output
1231
+
1232
+ return CausalLMOutputWithCrossAttentions(
1233
+ loss=loss,
1234
+ logits=lm_logits,
1235
+ past_key_values=transformer_outputs.past_key_values,
1236
+ hidden_states=transformer_outputs.hidden_states,
1237
+ attentions=transformer_outputs.attentions,
1238
+ cross_attentions=transformer_outputs.cross_attentions,
1239
+ )
1240
+
1241
+ @staticmethod
1242
+ def _reorder_cache(
1243
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1244
+ ) -> Tuple[Tuple[torch.Tensor]]:
1245
+ """
1246
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1247
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1248
+ beam_idx at every generation step.
1249
+ """
1250
+ return tuple(
1251
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1252
+ for layer_past in past_key_values
1253
+ )
1254
+
1255
+
1256
+ @add_start_docstrings(
1257
+ """
1258
+ The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
1259
+ RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
1260
+ input embeddings, the classification head takes as input the input of a specified classification token index in the
1261
+ input sequence).
1262
+ """,
1263
+ GPT2_START_DOCSTRING,
1264
+ )
1265
+ class GPT2ADoubleHeadsModel(GPT2APreTrainedModel):
1266
+ _tied_weights_keys = ["lm_head.weight"]
1267
+
1268
+ def __init__(self, config):
1269
+ super().__init__(config)
1270
+ config.num_labels = 1
1271
+ self.transformer = GPT2AModel(config)
1272
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
1273
+ self.multiple_choice_head = SequenceSummary(config)
1274
+
1275
+ # Model parallel
1276
+ self.model_parallel = False
1277
+ self.device_map = None
1278
+
1279
+ # Initialize weights and apply final processing
1280
+ self.post_init()
1281
+
1282
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
1283
+ def parallelize(self, device_map=None):
1284
+ warnings.warn(
1285
+ "`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should"
1286
+ " load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your"
1287
+ " own `device_map` but it needs to be a dictionary module_name to device, so for instance"
1288
+ " {'transformer.h.0': 0, 'transformer.h.1': 1, ...}",
1289
+ FutureWarning,
1290
+ )
1291
+ self.device_map = (
1292
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
1293
+ if device_map is None
1294
+ else device_map
1295
+ )
1296
+ assert_device_map(self.device_map, len(self.transformer.h))
1297
+ self.transformer.parallelize(self.device_map)
1298
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
1299
+ self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
1300
+ self.model_parallel = True
1301
+
1302
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
1303
+ def deparallelize(self):
1304
+ warnings.warn(
1305
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
1306
+ FutureWarning,
1307
+ )
1308
+ self.transformer.deparallelize()
1309
+ self.transformer = self.transformer.to("cpu")
1310
+ self.lm_head = self.lm_head.to("cpu")
1311
+ self.multiple_choice_head = self.multiple_choice_head.to("cpu")
1312
+ self.model_parallel = False
1313
+ torch.cuda.empty_cache()
1314
+
1315
+ def get_output_embeddings(self):
1316
+ return self.lm_head
1317
+
1318
+ def set_output_embeddings(self, new_embeddings):
1319
+ self.lm_head = new_embeddings
1320
+
1321
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
1322
+ token_type_ids = kwargs.get("token_type_ids", None)
1323
+ # only last token for inputs_ids if past is defined in kwargs
1324
+ if past_key_values:
1325
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1326
+ if token_type_ids is not None:
1327
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1328
+
1329
+ attention_mask = kwargs.get("attention_mask", None)
1330
+ position_ids = kwargs.get("position_ids", None)
1331
+
1332
+ if attention_mask is not None and position_ids is None:
1333
+ # create position_ids on the fly for batch generation
1334
+ position_ids = attention_mask.long().cumsum(-1) - 1
1335
+ position_ids.masked_fill_(attention_mask == 0, 1)
1336
+ if past_key_values:
1337
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1338
+ else:
1339
+ position_ids = None
1340
+
1341
+ return {
1342
+ "input_ids": input_ids,
1343
+ "past_key_values": past_key_values,
1344
+ "use_cache": kwargs.get("use_cache"),
1345
+ "position_ids": position_ids,
1346
+ "attention_mask": attention_mask,
1347
+ "token_type_ids": token_type_ids,
1348
+ }
1349
+
1350
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1351
+ @replace_return_docstrings(output_type=GPT2ADoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
1352
+ def forward(
1353
+ self,
1354
+ input_ids: Optional[torch.LongTensor] = None,
1355
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1356
+ attention_mask: Optional[torch.FloatTensor] = None,
1357
+ token_type_ids: Optional[torch.LongTensor] = None,
1358
+ position_ids: Optional[torch.LongTensor] = None,
1359
+ head_mask: Optional[torch.FloatTensor] = None,
1360
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1361
+ mc_token_ids: Optional[torch.LongTensor] = None,
1362
+ labels: Optional[torch.LongTensor] = None,
1363
+ mc_labels: Optional[torch.LongTensor] = None,
1364
+ use_cache: Optional[bool] = None,
1365
+ output_attentions: Optional[bool] = None,
1366
+ output_hidden_states: Optional[bool] = None,
1367
+ return_dict: Optional[bool] = None,
1368
+ **kwargs,
1369
+ ) -> Union[Tuple, GPT2ADoubleHeadsModelOutput]:
1370
+ r"""
1371
+ mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
1372
+ Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1373
+ 1]`.
1374
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1375
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1376
+ `labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
1377
+ `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
1378
+ mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
1379
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
1380
+ where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
1381
+
1382
+ Return:
1383
+
1384
+ Example:
1385
+
1386
+ ```python
1387
+ >>> import torch
1388
+ >>> from transformers import AutoTokenizer, GPT2DoubleHeadsModel
1389
+
1390
+ >>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
1391
+ >>> model = GPT2DoubleHeadsModel.from_pretrained("gpt2")
1392
+
1393
+ >>> # Add a [CLS] to the vocabulary (we should train it also!)
1394
+ >>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
1395
+ >>> # Update the model embeddings with the new vocabulary size
1396
+ >>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
1397
+
1398
+ >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
1399
+ >>> encoded_choices = [tokenizer.encode(s) for s in choices]
1400
+ >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
1401
+
1402
+ >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
1403
+ >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
1404
+
1405
+ >>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
1406
+ >>> lm_logits = outputs.logits
1407
+ >>> mc_logits = outputs.mc_logits
1408
+ ```"""
1409
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1410
+
1411
+ transformer_outputs = self.transformer(
1412
+ input_ids,
1413
+ past_key_values=past_key_values,
1414
+ attention_mask=attention_mask,
1415
+ token_type_ids=token_type_ids,
1416
+ position_ids=position_ids,
1417
+ head_mask=head_mask,
1418
+ inputs_embeds=inputs_embeds,
1419
+ use_cache=use_cache,
1420
+ output_attentions=output_attentions,
1421
+ output_hidden_states=output_hidden_states,
1422
+ return_dict=return_dict,
1423
+ )
1424
+
1425
+ hidden_states = transformer_outputs[0]
1426
+
1427
+ # Set device for model parallelism
1428
+ if self.model_parallel:
1429
+ torch.cuda.set_device(self.transformer.first_device)
1430
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
1431
+
1432
+ lm_logits = self.lm_head(hidden_states)
1433
+ mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
1434
+
1435
+ mc_loss = None
1436
+ if mc_labels is not None:
1437
+ loss_fct = CrossEntropyLoss()
1438
+ mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
1439
+ lm_loss = None
1440
+ if labels is not None:
1441
+ labels = labels.to(lm_logits.device)
1442
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1443
+ shift_labels = labels[..., 1:].contiguous()
1444
+ loss_fct = CrossEntropyLoss()
1445
+ lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1446
+
1447
+ if not return_dict:
1448
+ output = (lm_logits, mc_logits) + transformer_outputs[1:]
1449
+ if mc_loss is not None:
1450
+ output = (mc_loss,) + output
1451
+ return ((lm_loss,) + output) if lm_loss is not None else output
1452
+
1453
+ return GPT2ADoubleHeadsModelOutput(
1454
+ loss=lm_loss,
1455
+ mc_loss=mc_loss,
1456
+ logits=lm_logits,
1457
+ mc_logits=mc_logits,
1458
+ past_key_values=transformer_outputs.past_key_values,
1459
+ hidden_states=transformer_outputs.hidden_states,
1460
+ attentions=transformer_outputs.attentions,
1461
+ )
1462
+
1463
+ @staticmethod
1464
+ def _reorder_cache(
1465
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1466
+ ) -> Tuple[Tuple[torch.Tensor]]:
1467
+ """
1468
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1469
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1470
+ beam_idx at every generation step.
1471
+ """
1472
+ return tuple(
1473
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1474
+ for layer_past in past_key_values
1475
+ )
1476
+
1477
+
1478
+ @add_start_docstrings(
1479
+ """
1480
+ The GPT2 Model transformer with a sequence classification head on top (linear layer).
1481
+
1482
+ [`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1483
+ (e.g. GPT-1) do.
1484
+
1485
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1486
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1487
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1488
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1489
+ each row of the batch).
1490
+ """,
1491
+ GPT2_START_DOCSTRING,
1492
+ )
1493
+ class GPT2AForSequenceClassification(GPT2APreTrainedModel):
1494
+ def __init__(self, config):
1495
+ super().__init__(config)
1496
+ self.num_labels = config.num_labels
1497
+ self.transformer = GPT2Model(config)
1498
+ self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
1499
+
1500
+ # Model parallel
1501
+ self.model_parallel = False
1502
+ self.device_map = None
1503
+
1504
+ # Initialize weights and apply final processing
1505
+ self.post_init()
1506
+
1507
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1508
+ @add_code_sample_docstrings(
1509
+ checkpoint="microsoft/DialogRPT-updown",
1510
+ output_type=SequenceClassifierOutputWithPast,
1511
+ config_class=_CONFIG_FOR_DOC,
1512
+ )
1513
+ def forward(
1514
+ self,
1515
+ input_ids: Optional[torch.LongTensor] = None,
1516
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1517
+ attention_mask: Optional[torch.FloatTensor] = None,
1518
+ token_type_ids: Optional[torch.LongTensor] = None,
1519
+ position_ids: Optional[torch.LongTensor] = None,
1520
+ head_mask: Optional[torch.FloatTensor] = None,
1521
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1522
+ labels: Optional[torch.LongTensor] = None,
1523
+ use_cache: Optional[bool] = None,
1524
+ output_attentions: Optional[bool] = None,
1525
+ output_hidden_states: Optional[bool] = None,
1526
+ return_dict: Optional[bool] = None,
1527
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1528
+ r"""
1529
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1530
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1531
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1532
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1533
+ """
1534
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1535
+
1536
+ transformer_outputs = self.transformer(
1537
+ input_ids,
1538
+ past_key_values=past_key_values,
1539
+ attention_mask=attention_mask,
1540
+ token_type_ids=token_type_ids,
1541
+ position_ids=position_ids,
1542
+ head_mask=head_mask,
1543
+ inputs_embeds=inputs_embeds,
1544
+ use_cache=use_cache,
1545
+ output_attentions=output_attentions,
1546
+ output_hidden_states=output_hidden_states,
1547
+ return_dict=return_dict,
1548
+ )
1549
+ hidden_states = transformer_outputs[0]
1550
+ logits = self.score(hidden_states)
1551
+
1552
+ if input_ids is not None:
1553
+ batch_size, sequence_length = input_ids.shape[:2]
1554
+ else:
1555
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1556
+
1557
+ assert (
1558
+ self.config.pad_token_id is not None or batch_size == 1
1559
+ ), "Cannot handle batch sizes > 1 if no padding token is defined."
1560
+ if self.config.pad_token_id is None:
1561
+ sequence_lengths = -1
1562
+ else:
1563
+ if input_ids is not None:
1564
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1565
+ logits.device
1566
+ )
1567
+ else:
1568
+ sequence_lengths = -1
1569
+ logger.warning(
1570
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1571
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1572
+ )
1573
+
1574
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1575
+
1576
+ loss = None
1577
+ if labels is not None:
1578
+ if self.config.problem_type is None:
1579
+ if self.num_labels == 1:
1580
+ self.config.problem_type = "regression"
1581
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1582
+ self.config.problem_type = "single_label_classification"
1583
+ else:
1584
+ self.config.problem_type = "multi_label_classification"
1585
+
1586
+ if self.config.problem_type == "regression":
1587
+ loss_fct = MSELoss()
1588
+ if self.num_labels == 1:
1589
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1590
+ else:
1591
+ loss = loss_fct(pooled_logits, labels)
1592
+ elif self.config.problem_type == "single_label_classification":
1593
+ loss_fct = CrossEntropyLoss()
1594
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1595
+ elif self.config.problem_type == "multi_label_classification":
1596
+ loss_fct = BCEWithLogitsLoss()
1597
+ loss = loss_fct(pooled_logits, labels)
1598
+ if not return_dict:
1599
+ output = (pooled_logits,) + transformer_outputs[1:]
1600
+ return ((loss,) + output) if loss is not None else output
1601
+
1602
+ return SequenceClassifierOutputWithPast(
1603
+ loss=loss,
1604
+ logits=pooled_logits,
1605
+ past_key_values=transformer_outputs.past_key_values,
1606
+ hidden_states=transformer_outputs.hidden_states,
1607
+ attentions=transformer_outputs.attentions,
1608
+ )
1609
+
1610
+
1611
+ @add_start_docstrings(
1612
+ """
1613
+ GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1614
+ Named-Entity-Recognition (NER) tasks.
1615
+ """,
1616
+ GPT2_START_DOCSTRING,
1617
+ )
1618
+ class GPT2AForTokenClassification(GPT2APreTrainedModel):
1619
+ def __init__(self, config):
1620
+ super().__init__(config)
1621
+ self.num_labels = config.num_labels
1622
+
1623
+ self.transformer = GPT2AModel(config)
1624
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1625
+ classifier_dropout = config.classifier_dropout
1626
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1627
+ classifier_dropout = config.hidden_dropout
1628
+ else:
1629
+ classifier_dropout = 0.1
1630
+ self.dropout = nn.Dropout(classifier_dropout)
1631
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1632
+
1633
+ # Model parallel
1634
+ self.model_parallel = False
1635
+ self.device_map = None
1636
+
1637
+ # Initialize weights and apply final processing
1638
+ self.post_init()
1639
+
1640
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
1641
+ # fmt: off
1642
+ @add_code_sample_docstrings(
1643
+ checkpoint="brad1141/gpt2-finetuned-comp2",
1644
+ output_type=TokenClassifierOutput,
1645
+ config_class=_CONFIG_FOR_DOC,
1646
+ expected_loss=0.25,
1647
+ expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"],
1648
+ )
1649
+ # fmt: on
1650
+ def forward(
1651
+ self,
1652
+ input_ids: Optional[torch.LongTensor] = None,
1653
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1654
+ attention_mask: Optional[torch.FloatTensor] = None,
1655
+ token_type_ids: Optional[torch.LongTensor] = None,
1656
+ position_ids: Optional[torch.LongTensor] = None,
1657
+ head_mask: Optional[torch.FloatTensor] = None,
1658
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1659
+ labels: Optional[torch.LongTensor] = None,
1660
+ use_cache: Optional[bool] = None,
1661
+ output_attentions: Optional[bool] = None,
1662
+ output_hidden_states: Optional[bool] = None,
1663
+ return_dict: Optional[bool] = None,
1664
+ ) -> Union[Tuple, TokenClassifierOutput]:
1665
+ r"""
1666
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1667
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1668
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1669
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1670
+ """
1671
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1672
+
1673
+ transformer_outputs = self.transformer(
1674
+ input_ids,
1675
+ past_key_values=past_key_values,
1676
+ attention_mask=attention_mask,
1677
+ token_type_ids=token_type_ids,
1678
+ position_ids=position_ids,
1679
+ head_mask=head_mask,
1680
+ inputs_embeds=inputs_embeds,
1681
+ use_cache=use_cache,
1682
+ output_attentions=output_attentions,
1683
+ output_hidden_states=output_hidden_states,
1684
+ return_dict=return_dict,
1685
+ )
1686
+
1687
+ hidden_states = transformer_outputs[0]
1688
+ hidden_states = self.dropout(hidden_states)
1689
+ logits = self.classifier(hidden_states)
1690
+
1691
+ loss = None
1692
+ if labels is not None:
1693
+ labels = labels.to(logits.device)
1694
+ loss_fct = CrossEntropyLoss()
1695
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1696
+
1697
+ if not return_dict:
1698
+ output = (logits,) + transformer_outputs[2:]
1699
+ return ((loss,) + output) if loss is not None else output
1700
+
1701
+ return TokenClassifierOutput(
1702
+ loss=loss,
1703
+ logits=logits,
1704
+ hidden_states=transformer_outputs.hidden_states,
1705
+ attentions=transformer_outputs.attentions,
1706
+ )
1707
+
1708
+
1709
+ @add_start_docstrings(
1710
+ """
1711
+ The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
1712
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1713
+ """,
1714
+ GPT2_START_DOCSTRING,
1715
+ )
1716
+ class GPT2AForQuestionAnswering(GPT2APreTrainedModel):
1717
+ def __init__(self, config):
1718
+ super().__init__(config)
1719
+ self.num_labels = config.num_labels
1720
+ self.transformer = GPT2AModel(config)
1721
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1722
+
1723
+ # Model parallel
1724
+ self.model_parallel = False
1725
+ self.device_map = None
1726
+ self.gradient_checkpointing = False
1727
+
1728
+ # Initialize weights and apply final processing
1729
+ self.post_init()
1730
+
1731
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1732
+ @add_code_sample_docstrings(
1733
+ checkpoint=_CHECKPOINT_FOR_DOC,
1734
+ output_type=QuestionAnsweringModelOutput,
1735
+ config_class=_CONFIG_FOR_DOC,
1736
+ real_checkpoint=_CHECKPOINT_FOR_DOC,
1737
+ )
1738
+ def forward(
1739
+ self,
1740
+ input_ids: Optional[torch.LongTensor] = None,
1741
+ attention_mask: Optional[torch.FloatTensor] = None,
1742
+ token_type_ids: Optional[torch.LongTensor] = None,
1743
+ position_ids: Optional[torch.LongTensor] = None,
1744
+ head_mask: Optional[torch.FloatTensor] = None,
1745
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1746
+ start_positions: Optional[torch.LongTensor] = None,
1747
+ end_positions: Optional[torch.LongTensor] = None,
1748
+ output_attentions: Optional[bool] = None,
1749
+ output_hidden_states: Optional[bool] = None,
1750
+ return_dict: Optional[bool] = None,
1751
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1752
+ r"""
1753
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1754
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1755
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1756
+ are not taken into account for computing the loss.
1757
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1758
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1759
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1760
+ are not taken into account for computing the loss.
1761
+ """
1762
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1763
+
1764
+ outputs = self.transformer(
1765
+ input_ids,
1766
+ attention_mask=attention_mask,
1767
+ token_type_ids=token_type_ids,
1768
+ position_ids=position_ids,
1769
+ head_mask=head_mask,
1770
+ inputs_embeds=inputs_embeds,
1771
+ output_attentions=output_attentions,
1772
+ output_hidden_states=output_hidden_states,
1773
+ return_dict=return_dict,
1774
+ )
1775
+
1776
+ sequence_output = outputs[0]
1777
+
1778
+ logits = self.qa_outputs(sequence_output)
1779
+ start_logits, end_logits = logits.split(1, dim=-1)
1780
+ start_logits = start_logits.squeeze(-1).contiguous()
1781
+ end_logits = end_logits.squeeze(-1).contiguous()
1782
+
1783
+ total_loss = None
1784
+ if start_positions is not None and end_positions is not None:
1785
+ # If we are on multi-GPU, split add a dimension
1786
+ if len(start_positions.size()) > 1:
1787
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1788
+ if len(end_positions.size()) > 1:
1789
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1790
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1791
+ ignored_index = start_logits.size(1)
1792
+ start_positions = start_positions.clamp(0, ignored_index)
1793
+ end_positions = end_positions.clamp(0, ignored_index)
1794
+
1795
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1796
+ start_loss = loss_fct(start_logits, start_positions)
1797
+ end_loss = loss_fct(end_logits, end_positions)
1798
+ total_loss = (start_loss + end_loss) / 2
1799
+
1800
+ if not return_dict:
1801
+ output = (start_logits, end_logits) + outputs[2:]
1802
+ return ((total_loss,) + output) if total_loss is not None else output
1803
+
1804
+ return QuestionAnsweringModelOutput(
1805
+ loss=total_loss,
1806
+ start_logits=start_logits,
1807
+ end_logits=end_logits,
1808
+ hidden_states=outputs.hidden_states,
1809
+ attentions=outputs.attentions,
1810
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc3d145a69e10430ef0e4fe0269a1f01fe0cde4687594aa0f2e0ef23d1dcb966
3
+ size 281894099