File size: 7,379 Bytes
7b056bf
 
 
c215234
7b056bf
 
c215234
7b056bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c215234
6b89359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b056bf
 
 
 
 
 
 
 
 
 
 
361416d
7b056bf
 
361416d
 
4767c9e
7b056bf
 
 
 
 
4767c9e
361416d
7b056bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4767c9e
7b056bf
 
 
 
 
057ee77
7b056bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
tags:
- summarization
- mT5
datasets:
- csebuetnlp/xlsum
language:
- am
- ar
- az
- bn
- my
- zh
- en
- fr
- gu
- ha
- hi
- ig
- id
- ja
- rn
- ko
- ky
- mr
- ne
- om
- ps
- fa
- pcm
- pt
- pa
- ru
- gd
- sr
- si
- so
- es
- sw
- ta
- te
- th
- ti
- tr
- uk
- ur
- uz
- vi
- cy
- yo
licenses:
- cc-by-nc-sa-4.0
widget:
- text: Videos that say approved vaccines are dangerous and cause autism, cancer or
    infertility are among those that will be taken down, the company said.  The policy
    includes the termination of accounts of anti-vaccine influencers.  Tech giants
    have been criticised for not doing more to counter false health information on
    their sites.  In July, US President Joe Biden said social media platforms were
    largely responsible for people's scepticism in getting vaccinated by spreading
    misinformation, and appealed for them to address the issue.  YouTube, which is
    owned by Google, said 130,000 videos were removed from its platform since last
    year, when it implemented a ban on content spreading misinformation about Covid
    vaccines.  In a blog post, the company said it had seen false claims about Covid
    jabs "spill over into misinformation about vaccines in general". The new policy
    covers long-approved vaccines, such as those against measles or hepatitis B.  "We're
    expanding our medical misinformation policies on YouTube with new guidelines on
    currently administered vaccines that are approved and confirmed to be safe and
    effective by local health authorities and the WHO," the post said, referring to
    the World Health Organization.
model-index:
- name: csebuetnlp/mT5_multilingual_XLSum
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 21.0559
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 5.6176
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 14.8588
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 18.4103
      verified: true
    - name: loss
      type: loss
      value: 3.144441843032837
      verified: true
    - name: gen_len
      type: gen_len
      value: 26.5346
      verified: true
---

# mT5-multilingual-XLSum

This repository contains the mT5 checkpoint finetuned on the 45 languages of [XL-Sum](https://huggingface.co/datasets/csebuetnlp/xlsum) dataset. For finetuning details and scripts,
see the [paper](https://aclanthology.org/2021.findings-acl.413/) and the [official repository](https://github.com/csebuetnlp/xl-sum). 


## Using this model in `transformers` (tested on 4.11.0.dev0)

```python
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))

article_text = """Videos that say approved vaccines are dangerous and cause autism, cancer or infertility are among those that will be taken down, the company said.  The policy includes the termination of accounts of anti-vaccine influencers.  Tech giants have been criticised for not doing more to counter false health information on their sites.  In July, US President Joe Biden said social media platforms were largely responsible for people's scepticism in getting vaccinated by spreading misinformation, and appealed for them to address the issue.  YouTube, which is owned by Google, said 130,000 videos were removed from its platform since last year, when it implemented a ban on content spreading misinformation about Covid vaccines.  In a blog post, the company said it had seen false claims about Covid jabs "spill over into misinformation about vaccines in general". The new policy covers long-approved vaccines, such as those against measles or hepatitis B.  "We're expanding our medical misinformation policies on YouTube with new guidelines on currently administered vaccines that are approved and confirmed to be safe and effective by local health authorities and the WHO," the post said, referring to the World Health Organization."""

model_name = "csebuetnlp/mT5_multilingual_XLSum"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

input_ids = tokenizer(
    [WHITESPACE_HANDLER(article_text)],
    return_tensors="pt",
    padding="max_length",
    truncation=True,
    max_length=512
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    max_length=84,
    no_repeat_ngram_size=2,
    num_beams=4
)[0]

summary = tokenizer.decode(
    output_ids,
    skip_special_tokens=True,
    clean_up_tokenization_spaces=False
)

print(summary)
```

## Benchmarks

Scores on the XL-Sum test sets are as follows:

Language | ROUGE-1 / ROUGE-2 / ROUGE-L
---------|----------------------------
Amharic | 20.0485 / 7.4111 / 18.0753
Arabic | 34.9107 / 14.7937 / 29.1623
Azerbaijani | 21.4227 / 9.5214 / 19.3331
Bengali | 29.5653 / 12.1095 / 25.1315
Burmese | 15.9626 / 5.1477 / 14.1819
Chinese (Simplified) | 39.4071 / 17.7913 / 33.406
Chinese (Traditional) | 37.1866 / 17.1432 / 31.6184
English | 37.601 / 15.1536 / 29.8817
French | 35.3398 / 16.1739 / 28.2041
Gujarati | 21.9619 / 7.7417 / 19.86
Hausa | 39.4375 / 17.6786 / 31.6667
Hindi | 38.5882 / 16.8802 / 32.0132
Igbo | 31.6148 / 10.1605 / 24.5309
Indonesian | 37.0049 / 17.0181 / 30.7561
Japanese | 48.1544 / 23.8482 / 37.3636
Kirundi | 31.9907 / 14.3685 / 25.8305
Korean | 23.6745 / 11.4478 / 22.3619
Kyrgyz | 18.3751 / 7.9608 / 16.5033
Marathi | 22.0141 / 9.5439 / 19.9208
Nepali | 26.6547 / 10.2479 / 24.2847
Oromo | 18.7025 / 6.1694 / 16.1862
Pashto | 38.4743 / 15.5475 / 31.9065
Persian | 36.9425 / 16.1934 / 30.0701
Pidgin | 37.9574 / 15.1234 / 29.872
Portuguese | 37.1676 / 15.9022 / 28.5586
Punjabi | 30.6973 / 12.2058 / 25.515
Russian | 32.2164 / 13.6386 / 26.1689
Scottish Gaelic | 29.0231 / 10.9893 / 22.8814
Serbian (Cyrillic) | 23.7841 / 7.9816 / 20.1379
Serbian (Latin) | 21.6443 / 6.6573 / 18.2336
Sinhala | 27.2901 / 13.3815 / 23.4699
Somali | 31.5563 / 11.5818 / 24.2232
Spanish | 31.5071 / 11.8767 / 24.0746
Swahili | 37.6673 / 17.8534 / 30.9146
Tamil | 24.3326 / 11.0553 / 22.0741
Telugu | 19.8571 / 7.0337 / 17.6101
Thai | 37.3951 / 17.275 / 28.8796
Tigrinya | 25.321 / 8.0157 / 21.1729
Turkish | 32.9304 / 15.5709 / 29.2622
Ukrainian | 23.9908 / 10.1431 / 20.9199
Urdu | 39.5579 / 18.3733 / 32.8442
Uzbek | 16.8281 / 6.3406 / 15.4055
Vietnamese | 32.8826 / 16.2247 / 26.0844
Welsh | 32.6599 / 11.596 / 26.1164
Yoruba | 31.6595 / 11.6599 / 25.0898



## Citation

If you use this model, please cite the following paper:
```
@inproceedings{hasan-etal-2021-xl,
    title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
    author = "Hasan, Tahmid  and
      Bhattacharjee, Abhik  and
      Islam, Md. Saiful  and
      Mubasshir, Kazi  and
      Li, Yuan-Fang  and
      Kang, Yong-Bin  and
      Rahman, M. Sohel  and
      Shahriyar, Rifat",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.413",
    pages = "4693--4703",
}
```