csikasote commited on
Commit
d323587
1 Parent(s): 3489ba5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xls-r-300m-bemba-fds
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xls-r-300m-bemba-fds
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.3594
18
+ - Wer: 0.4067
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0003
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 500
46
+ - num_epochs: 30
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 2.9961 | 0.67 | 500 | 0.5157 | 0.7133 |
54
+ | 0.5903 | 1.34 | 1000 | 0.3663 | 0.4989 |
55
+ | 0.4804 | 2.02 | 1500 | 0.3547 | 0.4653 |
56
+ | 0.4146 | 2.69 | 2000 | 0.3274 | 0.4345 |
57
+ | 0.3792 | 3.36 | 2500 | 0.3586 | 0.4640 |
58
+ | 0.3509 | 4.03 | 3000 | 0.3360 | 0.4316 |
59
+ | 0.3114 | 4.7 | 3500 | 0.3382 | 0.4303 |
60
+ | 0.2935 | 5.38 | 4000 | 0.3263 | 0.4091 |
61
+ | 0.2723 | 6.05 | 4500 | 0.3348 | 0.4175 |
62
+ | 0.2502 | 6.72 | 5000 | 0.3317 | 0.4147 |
63
+ | 0.2334 | 7.39 | 5500 | 0.3542 | 0.4030 |
64
+ | 0.2287 | 8.06 | 6000 | 0.3594 | 0.4067 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.11.3
70
+ - Pytorch 1.10.0+cu111
71
+ - Datasets 1.13.3
72
+ - Tokenizers 0.10.3