File size: 2,043 Bytes
627b51f 4ae37eb 627b51f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
base_model: openai/whisper-large
model-index:
- name: whisper-large-nya
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-nya
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4712
- Wer: 21.5239
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2416 | 0.99 | 500 | 0.5146 | 34.7076 |
| 0.1343 | 1.97 | 1000 | 0.4138 | 28.1748 |
| 0.0792 | 2.96 | 1500 | 0.4268 | 31.3290 |
| 0.0372 | 3.94 | 2000 | 0.4256 | 32.8057 |
| 0.0246 | 4.93 | 2500 | 0.4354 | 22.0673 |
| 0.0097 | 5.92 | 3000 | 0.4532 | 25.1742 |
| 0.003 | 6.9 | 3500 | 0.4595 | 21.0396 |
| 0.0005 | 7.89 | 4000 | 0.4586 | 21.3113 |
| 0.0007 | 8.87 | 4500 | 0.4653 | 21.7129 |
| 0.0002 | 9.86 | 5000 | 0.4712 | 21.5239 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|