File size: 2,043 Bytes
627b51f
 
 
 
 
 
4ae37eb
627b51f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
base_model: openai/whisper-large
model-index:
- name: whisper-large-nya
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-nya

This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4712
- Wer: 21.5239

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2416        | 0.99  | 500  | 0.5146          | 34.7076 |
| 0.1343        | 1.97  | 1000 | 0.4138          | 28.1748 |
| 0.0792        | 2.96  | 1500 | 0.4268          | 31.3290 |
| 0.0372        | 3.94  | 2000 | 0.4256          | 32.8057 |
| 0.0246        | 4.93  | 2500 | 0.4354          | 22.0673 |
| 0.0097        | 5.92  | 3000 | 0.4532          | 25.1742 |
| 0.003         | 6.9   | 3500 | 0.4595          | 21.0396 |
| 0.0005        | 7.89  | 4000 | 0.4586          | 21.3113 |
| 0.0007        | 8.87  | 4500 | 0.4653          | 21.7129 |
| 0.0002        | 9.86  | 5000 | 0.4712          | 21.5239 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2