File size: 9,492 Bytes
b315dd9
 
 
 
 
cf0fab9
 
 
b315dd9
 
4fc4f67
 
 
 
 
 
 
 
 
 
 
 
 
fa97af3
b315dd9
 
 
3e7c276
 
55b2118
 
885447c
 
 
 
 
 
 
55b2118
3c3d879
 
b315dd9
cb0fc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885447c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09ac4a1
b315dd9
 
d9c918d
b315dd9
4fc4f67
2853d47
 
 
 
 
 
 
 
 
 
 
 
 
 
09ac4a1
885447c
b315dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
tags:
- merge
- mergekit
- lazymergekit
language:
- de
- en
base_model:
- abideen/AlphaMonarch-dora
- mayflowergmbh/Wiedervereinigung-7b-dpo
- flemmingmiguel/NeuDist-Ro-7B
- ResplendentAI/Flora_DPO_7B
- yleo/EmertonMonarch-7B
- occiglot/occiglot-7b-de-en-instruct
- OpenPipe/mistral-ft-optimized-1227
- DiscoResearch/DiscoLM_German_7b_v1
- LeoLM/leo-mistral-hessianai-7b
- DRXD1000/Phoenix
- VAGOsolutions/SauerkrautLM-7b-v1-mistral
- malteos/hermeo-7b
- FelixChao/WestSeverus-7B-DPO-v2
- cognitivecomputations/openchat-3.5-0106-laser
license: cc-by-nc-4.0
---

# Spaetzle-v69-7b
This is a progressive (mostly dare-ties, but also slerp) merge with the intention of a suitable compromise for English and German local tasks.

There is also a 4q_k_m quantized [GGUF](https://huggingface.co/cstr/Spaetzle-v69-7b-GGUF).

It should work sufficiently well with ChatML prompt template (for all merged models should have seen ChatML prompts at least in DPO stage).

## Evaluation

Benchmark scores are not the possible optimum, as the model attempts a compromise with a number of parameters, like German language performance, instruction following, reasoning capabilities, robustness (so far, i did not encounter inserted tokens, e.g.), model licensing, and other criteria.
Nevertheless, they are not too bad:

It achieves (running quantized) in 
- German EQ Bench: Score (v2_de): 62.59 (Parseable: 171.0).
- English EQ Bench: Score (v2): 76.43 (Parseable: 171.0).

[Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard):
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cstr__Spaetzle-v69-7b)

 |             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |72.87|
|AI2 Reasoning Challenge (25-Shot)|69.54|
|HellaSwag (10-Shot)              |86.77|
|MMLU (5-Shot)                    |64.63|
|TruthfulQA (0-shot)              |65.61|
|Winogrande (5-shot)              |81.93|
|GSM8k (5-shot)                   |68.76|

Nous benchmark results:

|                            Model                             |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|--------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[Spaetzle-v69-7b](https://huggingface.co/cstr/Spaetzle-v69-7b)|  44.48|  75.84|     66.15|   46.59|  58.27|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |25.98|±  |  2.76|
|                              |       |acc_norm|23.62|±  |  2.67|
|agieval_logiqa_en             |      0|acc     |39.78|±  |  1.92|
|                              |       |acc_norm|39.48|±  |  1.92|
|agieval_lsat_ar               |      0|acc     |23.48|±  |  2.80|
|                              |       |acc_norm|23.91|±  |  2.82|
|agieval_lsat_lr               |      0|acc     |50.00|±  |  2.22|
|                              |       |acc_norm|51.76|±  |  2.21|
|agieval_lsat_rc               |      0|acc     |63.94|±  |  2.93|
|                              |       |acc_norm|64.31|±  |  2.93|
|agieval_sat_en                |      0|acc     |76.70|±  |  2.95|
|                              |       |acc_norm|77.67|±  |  2.91|
|agieval_sat_en_without_passage|      0|acc     |46.12|±  |  3.48|
|                              |       |acc_norm|44.17|±  |  3.47|
|agieval_sat_math              |      0|acc     |34.09|±  |  3.20|
|                              |       |acc_norm|30.91|±  |  3.12|

Average: 44.48%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |63.23|±  |  1.41|
|             |       |acc_norm|64.16|±  |  1.40|
|arc_easy     |      0|acc     |85.90|±  |  0.71|
|             |       |acc_norm|82.49|±  |  0.78|
|boolq        |      1|acc     |87.80|±  |  0.57|
|hellaswag    |      0|acc     |67.05|±  |  0.47|
|             |       |acc_norm|85.19|±  |  0.35|
|openbookqa   |      0|acc     |38.40|±  |  2.18|
|             |       |acc_norm|48.40|±  |  2.24|
|piqa         |      0|acc     |82.75|±  |  0.88|
|             |       |acc_norm|84.28|±  |  0.85|
|winogrande   |      0|acc     |78.53|±  |  1.15|

Average: 75.84%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |50.67|±  |  1.75|
|             |       |mc2   |66.15|±  |  1.48|

Average: 66.15%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|56.84|±  |  3.60|
|bigbench_date_understanding                     |      0|multiple_choice_grade|66.67|±  |  2.46|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|40.70|±  |  3.06|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|24.79|±  |  2.28|
|                                                |       |exact_str_match      |10.58|±  |  1.63|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|31.00|±  |  2.07|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|23.00|±  |  1.59|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|58.00|±  |  2.85|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|45.80|±  |  2.23|
|bigbench_navigate                               |      0|multiple_choice_grade|52.10|±  |  1.58|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|69.55|±  |  1.03|
|bigbench_ruin_names                             |      0|multiple_choice_grade|48.88|±  |  2.36|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|30.96|±  |  1.46|
|bigbench_snarks                                 |      0|multiple_choice_grade|73.48|±  |  3.29|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|74.14|±  |  1.40|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|42.70|±  |  1.56|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|23.60|±  |  1.20|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|18.40|±  |  0.93|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|58.00|±  |  2.85|

Average: 46.59%

Average score: 58.27%

## 🧩 Merge Configuration

Spaetzle-v69-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [abideen/AlphaMonarch-dora](https://huggingface.co/abideen/AlphaMonarch-dora)
* [cstr/Spaetzle-v68-7b](https://huggingface.co/cstr/Spaetzle-v68-7b)

The merge tree in total involves the following original models:
  - [abideen/AlphaMonarch-dora](https://huggingface.co/abideen/AlphaMonarch-dora)
  - [mayflowergmbh/Wiedervereinigung-7b-dpo](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo)
  - [flemmingmiguel/NeuDist-Ro-7B](https://huggingface.co/flemmingmiguel/NeuDist-Ro-7B)
  - [ResplendentAI/Flora_DPO_7B](https://huggingface.co/ResplendentAI/Flora_DPO_7B)
  - [yleo/EmertonMonarch-7B](https://huggingface.co/yleo/EmertonMonarch-7B)
  - [occiglot/occiglot-7b-de-en-instruct](https://huggingface.co/occiglot/occiglot-7b-de-en-instruct)     
  - [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227)
  - [DiscoResearch/DiscoLM_German_7b_v1](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1)
  - [LeoLM/leo-mistral-hessianai-7b](https://huggingface.co/LeoLM/leo-mistral-hessianai-7b)
  - [DRXD1000/Phoenix](https://huggingface.co/DRXD1000/Phoenix)
  - [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral)
  - [malteos/hermeo-7b](https://huggingface.co/malteos/hermeo-7b)
  - [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2)
  - [cognitivecomputations/openchat-3.5-0106-laser](https://huggingface.co/cognitivecomputations/openchat-3.5-0106-laser)

For this last merge:

```yaml
models:
  - model: cstr/Spaetzle-v68-7b
    # no parameters necessary for base model
  - model: abideen/AlphaMonarch-dora
    parameters:
      density: 0.60
      weight: 0.30
merge_method: dare_ties
base_model: cstr/Spaetzle-v68-7b
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v69-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```