csukuangfj commited on
Commit
91a6485
1 Parent(s): 22ffb52

generate htmls

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. generate-vad-asr.py +257 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.html
generate-vad-asr.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import re
4
+ from pathlib import Path
5
+ from typing import List
6
+
7
+ BASE_URL = "https://huggingface.co/csukuangfj/sherpa-onnx-harmony-os/resolve/main/"
8
+
9
+ from dataclasses import dataclass
10
+
11
+
12
+ @dataclass
13
+ class HAP:
14
+ major: int
15
+ minor: int
16
+ patch: int
17
+ short_name: str
18
+ lang: str
19
+
20
+ def __init__(self, s):
21
+ # sherpa-onnx-1.10.32-vad_asr-ru-zipformer.hap
22
+ s = str(s)
23
+ s = s.split("/")[-1]
24
+ split = s.split("-")
25
+ self.major, self.minor, self.patch = list(map(int, split[2].split(".")))
26
+ self.lang = split[4]
27
+ self.short_name = split[5]
28
+ if "small" in self.short_name:
29
+ self.short_name = "zzz" + self.short_name
30
+
31
+
32
+ def sort_by_hap(x):
33
+ x = HAP(x)
34
+ return (x.major, x.minor, x.patch, x.lang, x.short_name)
35
+
36
+
37
+ def get_all_files(d_list: List[str], suffix: str) -> List[str]:
38
+ if isinstance(d_list, str):
39
+ d_list = [d_list]
40
+ min_major = 1
41
+ min_minor = 9
42
+ min_patch = 10
43
+
44
+ ss = []
45
+ for d in d_list:
46
+ for root, _, files in os.walk(d):
47
+ for f in files:
48
+ if f.endswith(suffix):
49
+ major, minor, patch = list(map(int, f.split("-")[2].split(".")))
50
+ if major >= min_major and minor >= min_minor and patch >= min_patch:
51
+ ss.append(os.path.join(root, f))
52
+
53
+ ans = sorted(ss, key=sort_by_hap, reverse=True)
54
+
55
+ return list(map(lambda x: BASE_URL + str(x), ans))
56
+
57
+
58
+ def to_file(filename: str, files: List[str]):
59
+ content = r"""
60
+ <h1> HAPs for VAD + non-streaming speech recognition (HarmonyOS) </h1>
61
+ This page lists the <strong>VAD + non-streaming speech recognition</strong> HAPs for <a href="http://github.com/k2-fsa/sherpa-onnx">sherpa-onnx</a>,
62
+ one of the deployment frameworks of <a href="https://github.com/k2-fsa">the Next-gen Kaldi project</a>.
63
+ <br/>
64
+ The name of an HAP has the following rule:
65
+ <ul>
66
+ <li> sherpa-onnx-{version}-vad_asr-{lang}-{model}.hap
67
+ </ul>
68
+ where
69
+ <ul>
70
+ <li> version: It specifies the current version, e.g., 1.9.23
71
+ <li> lang: The lang of the model used in the HAP, e.g., en for English, zh for Chinese
72
+ <li> model: The name of the model used in the HAP
73
+ </ul>
74
+
75
+ <br/>
76
+
77
+ You can download all supported models from
78
+ <a href="https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models">https://github.com/k2-fsa/sherpa-onnx/releases/tag/asr-models</a>
79
+
80
+ <br/>
81
+ <br/>
82
+
83
+ <strong>Note about the license</strong> The code of Next-gen Kaldi is using
84
+ <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache-2.0 license</a>. However,
85
+ we support models from different frameworks. Please check the license of your selected model.
86
+
87
+ <br/>
88
+ <br/>
89
+
90
+ <!--
91
+ see https://www.tablesgenerator.com/html_tables#
92
+ -->
93
+
94
+ <style type="text/css">
95
+ .tg {border-collapse:collapse;border-spacing:0;}
96
+ .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
97
+ overflow:hidden;padding:10px 5px;word-break:normal;}
98
+ .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
99
+ font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
100
+ .tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top}
101
+ .tg .tg-0lax{text-align:left;vertical-align:top}
102
+ </style>
103
+ <table class="tg">
104
+ <thead>
105
+ <tr>
106
+ <th class="tg-0pky">HAP</th>
107
+ <th class="tg-0lax">Comment</th>
108
+ <th class="tg-0pky">VAD model</th>
109
+ <th class="tg-0pky">Non-streaming ASR model</th>
110
+ </tr>
111
+ </thead>
112
+ <tbody>
113
+ <tr>
114
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-ja-zipformer_reazonspeech.hap</td>
115
+ <td class="tg-0lax">It supports only Japanese. It is from <a href="https://github.com/reazon-research/ReazonSpeech">https://github.com/reazon-research/ReazonSpeech</a></td>
116
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
117
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-ja-reazonspeech-2024-08-01.tar.bz2">sherpa-onnx-zipformer-ja-reazonspeech-2024-08-01.tar.bz2</a></td>
118
+ </tr>
119
+ <tr>
120
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-zh_en_ko_ja_yue-sense_voice.hap</td>
121
+ <td class="tg-0lax">It supports Chinese, Cantonese, English, Korean, and Japanese (中、英、粤、日、韩5种语音). It is converted from <a href="https://github.com/FunAudioLLM/SenseVoice">https://github.com/FunAudioLLM/SenseVoice</a></td>
122
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
123
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2">sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17.tar.bz2</a></td>
124
+ </tr>
125
+ <tr>
126
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-zh-telespeech.hap</td>
127
+ <td class="tg-0lax">支持���常多种中文方言. It is converted from <a href="https://github.com/Tele-AI/TeleSpeech-ASR">https://github.com/Tele-AI/TeleSpeech-ASR</a></td>
128
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
129
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2">sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04.tar.bz2</a></td>
130
+ </tr>
131
+ <tr>
132
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-th-zipformer.hap</td>
133
+ <td class="tg-0lax">It supports only Thai. It is converted from <a href="https://huggingface.co/yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20/tree/main">https://huggingface.co/yfyeung/icefall-asr-gigaspeech2-th-zipformer-2024-06-20/tree/main</a></td>
134
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
135
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-thai-2024-06-20.tar.bz2">sherpa-onnx-zipformer-thai-2024-06-20.tar.bz2</a></td>
136
+ </tr>
137
+ <tr>
138
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-ko-zipformer.hap</td>
139
+ <td class="tg-0lax">It supports only Korean. It is converted from <a href="https://huggingface.co/johnBamma/icefall-asr-ksponspeech-zipformer-2024-06-24">https://huggingface.co/johnBamma/icefall-asr-ksponspeech-zipformer-2024-06-24</a></td>
140
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
141
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-korean-2024-06-24.tar.bz2">sherpa-onnx-zipformer-korean-2024-06-24.tar.bz2</a></td>
142
+ </tr>
143
+ <tr>
144
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-be_de_en_es_fr_hr_it_pl_ru_uk-fast_conformer_ctc_20k.hap</td>
145
+ <td class="tg-0lax">It supports <span style="color:red;">10 languages</span>: Belarusian, German, English, Spanish, French, Croatian, Italian, Polish, Russian, and Ukrainian. It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_multilingual_fastconformer_hybrid_large_pc">STT Multilingual FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on ~20000 hours of data.</td>
146
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
147
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-be-de-en-es-fr-hr-it-pl-ru-uk-20k.tar.bz2</a></td>
148
+ </tr>
149
+ <tr>
150
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-en_des_es_fr-fast_conformer_ctc_14288.hap</td>
151
+ <td class="tg-0lax">It supports <span style="color:red;">4 languages</span>: German, English, Spanish, and French . It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_multilingual_fastconformer_hybrid_large_pc_blend_eu">STT European FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on 14288 hours of data.</td>
152
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
153
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-en-de-es-fr-14288.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-en-de-es-fr-14288.tar.bz2</a></td>
154
+ </tr>
155
+ <tr>
156
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-es-fast_conformer_ctc_1424.hap</td>
157
+ <td class="tg-0lax">It supports only Spanish. It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_es_fastconformer_hybrid_large_pc">STT Es FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on 1424 hours of data.</td>
158
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
159
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-es-1424.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-es-1424.tar.bz2</a></td>
160
+ </tr>
161
+ <tr>
162
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-en-fast_conformer_ctc_24500.hap</td>
163
+ <td class="tg-0lax">It supports only English. It is converted from <a href="https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en_fastconformer_hybrid_large_pc">STT En FastConformer Hybrid Transducer-CTC Large P&C</a> from <a href="https://github.com/NVIDIA/NeMo/">NVIDIA/NeMo</a>. Note that only the CTC branch is used. It is trained on 8500 hours of data.</td>
164
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
165
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-fast-conformer-transducer-en-24500.tar.bz2">sherpa-onnx-nemo-fast-conformer-transducer-en-24500.tar.bz2</a></td>
166
+ </tr>
167
+ <tr>
168
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-zh-zipformer.hap</td>
169
+ <td class="tg-0lax">It supports only Chinese.</td>
170
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
171
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/icefall-asr-zipformer-wenetspeech-20230615.tar.bz2">icefall-asr-zipformer-wenetspeech-20230615</a></td>
172
+ </tr>
173
+ <tr>
174
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-zh-paraformer.hap</td>
175
+ <td class="tg-0lax"><span style="font-weight:400;font-style:normal">It supports both Chinese and English.</span></td>
176
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
177
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-03-28.tar.bz2">sherpa-onnx-paraformer-zh-2023-03-28</a></td>
178
+ </tr>
179
+ <tr>
180
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-en-whisper_tiny.hap</td>
181
+ <td class="tg-0lax">It supports only English.</td>
182
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
183
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-whisper-tiny.en.tar.bz2">sherpa-onnx-whisper-tiny.en</a></td>
184
+ </tr>
185
+ <tr>
186
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-en-moonshine_tiny_int8.hap</td>
187
+ <td class="tg-0lax">It supports only English.</td>
188
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
189
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-moonshine-tiny-en-int8.tar.bz2
190
+ ">sherpa-onnx-moonshine-tiny-en-int8</a></td>
191
+ </tr>
192
+ <tr>
193
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-ru-nemo_transducer_giga_am.hap</td>
194
+ <td class="tg-0lax">It supports only Russian.</td>
195
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
196
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24.tar.bz2">sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24.tar.bz2</a> <br/>Please see also <a href="https://github.com/salute-developers/GigaAM">https://github.com/salute-developers/GigaAM</a></td>
197
+ </tr>
198
+ <tr>
199
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-ru-nemo_ctc_giga_am.hap</td>
200
+ <td class="tg-0lax">It supports only Russian.</td>
201
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
202
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24.tar.bz2">sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24.tar.bz2</a> <br/>Please see also <a href="https://github.com/salute-developers/GigaAM">https://github.com/salute-developers/GigaAM</a></td>
203
+ </tr>
204
+ <tr>
205
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-ru-small_zipformer.hap</td>
206
+ <td class="tg-0lax">It supports only Russian.</td>
207
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
208
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-small-zipformer-ru-2024-09-18.tar.bz2">sherpa-onnx-small-zipformer-ru-2024-09-18.tar.bz2</a></td>
209
+ </tr>
210
+ <tr>
211
+ <td class="tg-0pky">sherpa-onnx-x.y.z-vad_asr-ru-zipformer.hap</td>
212
+ <td class="tg-0lax">It supports only Russian.</td>
213
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/silero_vad.onnx">silero_vad.onnx</a></td>
214
+ <td class="tg-0pky"><a href="https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-zipformer-ru-2024-09-18.tar.bz2">sherpa-onnx-zipformer-ru-2024-09-18.tar.bz2</a></td>
215
+ </tr>
216
+ </tbody>
217
+ </table>
218
+
219
+ <br/>
220
+ <br/>
221
+
222
+ <div/>
223
+ """
224
+ if "-cn" not in filename:
225
+ content += """
226
+ For Chinese users, please <a href="./hap-vad-asr-cn.html">visit this address</a>,
227
+ which replaces <a href="huggingface.co">huggingface.co</a> with <a href="hf-mirror.com">hf-mirror.com</a>
228
+ <br/>
229
+ <br/>
230
+ 中国用户, 请访问<a href="./hap-vad-asr-cn.html">这个地址</a>
231
+ <br/>
232
+ <br/>
233
+ """
234
+
235
+ with open(filename, "w") as f:
236
+ print(content, file=f)
237
+ for x in files:
238
+ name = x.rsplit("/", maxsplit=1)[-1]
239
+ print(f'<a href="{x}" />{name}<br/>', file=f)
240
+
241
+
242
+ def main():
243
+ hap = get_all_files("hap", suffix=".hap")
244
+ to_file("./hap-vad-asr.html", hap)
245
+
246
+ # for Chinese users
247
+ hap2 = []
248
+ for a in hap:
249
+ a = a.replace("huggingface.co", "hf-mirror.com")
250
+ a = a.replace("resolve", "blob")
251
+ hap2.append(a)
252
+
253
+ to_file("./hap-vad-asr-cn.html", hap2)
254
+
255
+
256
+ if __name__ == "__main__":
257
+ main()