File size: 5,202 Bytes
16d0f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python3

# Copyright (c)  2023  Xiaomi Corporation
# Author: Fangjun Kuang

import kaldi_native_fbank as knf
import librosa
import numpy as np
import onnxruntime


"""
---------inputs----------
speech ['batch_size', 'feats_length', 560] tensor(float)
speech_lengths ['batch_size'] tensor(int32)
---------outputs----------
logits ['batch_size', 'logits_length', 8404] tensor(float)
token_num ['Casttoken_num_dim_0'] tensor(int32)
us_alphas ['batch_size', 'alphas_length'] tensor(float)
us_cif_peak ['batch_size', 'alphas_length'] tensor(float)
"""


def show_model_info():
    session_opts = onnxruntime.SessionOptions()
    session_opts.log_severity_level = 3  # error level
    sess = onnxruntime.InferenceSession("model.int8.onnx", session_opts)
    print("---------inputs----------")
    for n in sess.get_inputs():
        print(n.name, n.shape, n.type)

    print("---------outputs----------")
    for n in sess.get_outputs():
        print(n.name, n.shape, n.type)

    import sys

    sys.exit(0)


def load_cmvn():
    neg_mean = None
    inv_std = None

    with open("am.mvn") as f:
        for line in f:
            if not line.startswith("<LearnRateCoef>"):
                continue
            t = line.split()[3:-1]
            t = list(map(lambda x: float(x), t))

            if neg_mean is None:
                neg_mean = np.array(t, dtype=np.float32)
            else:
                inv_std = np.array(t, dtype=np.float32)

    return neg_mean, inv_std


def compute_feat(filename):
    sample_rate = 16000
    samples, _ = librosa.load(filename, sr=sample_rate)
    opts = knf.FbankOptions()
    opts.frame_opts.dither = 0
    opts.frame_opts.snip_edges = False
    opts.frame_opts.samp_freq = sample_rate
    opts.mel_opts.num_bins = 80

    online_fbank = knf.OnlineFbank(opts)
    online_fbank.accept_waveform(sample_rate, (samples * 32768).tolist())
    online_fbank.input_finished()

    features = np.stack(
        [online_fbank.get_frame(i) for i in range(online_fbank.num_frames_ready)]
    )
    assert features.data.contiguous is True
    assert features.dtype == np.float32, features.dtype
    print("features sum", features.sum(), features.size)

    window_size = 7  # lfr_m
    window_shift = 6  # lfr_n

    T = (features.shape[0] - window_size) // window_shift + 1
    features = np.lib.stride_tricks.as_strided(
        features,
        shape=(T, features.shape[1] * window_size),
        strides=((window_shift * features.shape[1]) * 4, 4),
    )
    neg_mean, inv_std = load_cmvn()
    features = (features + neg_mean) * inv_std
    return features


# tokens.txt in paraformer has only one column
# while it has two columns ins sherpa-onnx.
# This function can handle tokens.txt from both paraformer and sherpa-onnx
def load_tokens():
    ans = dict()
    i = 0
    with open("tokens.txt", encoding="utf-8") as f:
        for line in f:
            ans[i] = line.strip().split()[0]
            i += 1
    return ans


def main():
    #  show_model_info()
    features = compute_feat("1.wav")
    features = np.expand_dims(features, axis=0)
    print(np.sum(features), features.size, features.shape)
    features_length = np.array([features.shape[1]], dtype=np.int32)

    features2 = compute_feat("2.wav")
    print(np.sum(features2), features2.size, features2.shape)
    features2 = np.expand_dims(features2, axis=0)
    features2_length = np.array([features2.shape[1]], dtype=np.int32)
    print(features.shape, features2.shape)

    pad = np.ones((1, 10, 560), dtype=np.float32) * -23.0258
    features3 = np.concatenate([features2, pad], axis=1)

    features4 = np.concatenate([features, features3], axis=0)
    features4_length = np.array([features.shape[1], features2.shape[1]], dtype=np.int32)
    print(features4.shape, features4_length)

    session_opts = onnxruntime.SessionOptions()
    session_opts.log_severity_level = 3  # error level
    sess = onnxruntime.InferenceSession("model.int8.onnx", session_opts)

    inputs = {
        "speech": features4,
        "speech_lengths": features4_length,
    }
    output_names = ["logits", "token_num", "us_alphas", "us_cif_peak"]

    try:
        outputs = sess.run(output_names, input_feed=inputs)
    except ONNXRuntimeError:
        print("Input wav is silence or noise")
        return

    print("0", outputs[0].shape)
    print("1", outputs[1].shape)
    print("2", outputs[2].shape)
    print("3", outputs[3].shape)
    log_probs = outputs[0][0]
    log_probs1 = outputs[0][1]
    y = log_probs.argmax(axis=-1)[: outputs[1][0]]
    y1 = log_probs1.argmax(axis=-1)[: outputs[1][1]]
    print(outputs[1])
    print(y)
    print(y1)

    tokens = load_tokens()
    text = "".join([tokens[i] for i in y if i not in (0, 2)])
    print(text)

    text1 = "".join([tokens[i] for i in y1 if i not in (0, 2)])
    print(text1)

    token_num = outputs[1]

    print([i for i in outputs[-1][0] if i > (1 - 1e-4)])
    print(len([i for i in outputs[-1][0] if i > (1 - 1e-4)]))
    print(token_num[0])

    print([i for i in outputs[-1][1] if i > (1 - 1e-4)])
    print(len([i for i in outputs[-1][1] if i > (1 - 1e-4)]))
    print(token_num[1])


if __name__ == "__main__":
    main()