csukuangfj's picture
add models
d6a516e
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
import os
from typing import Any, Dict
import onnx
import torch
from onnxruntime.quantization import QuantType, quantize_dynamic
from pyannote.audio import Model
from pyannote.audio.core.task import Problem, Resolution
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
"""Add meta data to an ONNX model. It is changed in-place.
Args:
filename:
Filename of the ONNX model to be changed.
meta_data:
Key-value pairs.
"""
model = onnx.load(filename)
while len(model.metadata_props):
model.metadata_props.pop()
for key, value in meta_data.items():
meta = model.metadata_props.add()
meta.key = key
meta.value = str(value)
onnx.save(model, filename)
@torch.no_grad()
def main():
# You can download ./pytorch_model.bin from
# https://hf-mirror.com/csukuangfj/pyannote-models/tree/main/segmentation-3.0
# or from
# https://huggingface.co/Revai/reverb-diarization-v1/tree/main
pt_filename = "./pytorch_model.bin"
model = Model.from_pretrained(pt_filename)
model.eval()
assert model.dimension == 7, model.dimension
print(model.specifications)
assert (
model.specifications.problem == Problem.MONO_LABEL_CLASSIFICATION
), model.specifications.problem
assert (
model.specifications.resolution == Resolution.FRAME
), model.specifications.resolution
assert model.specifications.duration == 10.0, model.specifications.duration
assert model.audio.sample_rate == 16000, model.audio.sample_rate
# (batch, num_channels, num_samples)
assert list(model.example_input_array.shape) == [
1,
1,
16000 * 10,
], model.example_input_array.shape
example_output = model(model.example_input_array)
# (batch, num_frames, num_classes)
# assert list(example_output.shape) == [1, 589, 7], example_output.shape
print(example_output.shape)
print(model.receptive_field.step)
print(model.receptive_field.duration)
print(model.receptive_field.step * 16000)
print(model.receptive_field.duration * 16000)
# assert model.receptive_field.step == 0.016875, model.receptive_field.step
# assert model.receptive_field.duration == 0.0619375, model.receptive_field.duration
# assert model.receptive_field.step * 16000 == 270, model.receptive_field.step * 16000
# assert model.receptive_field.duration * 16000 == 991, (
# model.receptive_field.duration * 16000
# )
opset_version = 14
filename = "model.onnx"
torch.onnx.export(
model,
model.example_input_array,
filename,
opset_version=opset_version,
input_names=["x"],
output_names=["y"],
dynamic_axes={
"x": {0: "N", 2: "T"},
"y": {0: "N", 1: "T"},
},
)
sample_rate = model.audio.sample_rate
window_size = int(model.specifications.duration) * 16000
receptive_field_size = int(model.receptive_field.duration * 16000)
receptive_field_shift = int(model.receptive_field.step * 16000)
is_revai = os.getenv("SHERPA_ONNX_IS_REVAI", "")
if is_revai == "":
url_1 = "https://huggingface.co/pyannote/segmentation-3.0"
url_2 = "https://huggingface.co/csukuangfj/pyannote-models/tree/main/segmentation-3.0"
license_url = (
"https://huggingface.co/pyannote/segmentation-3.0/blob/main/LICENSE"
)
model_author = "pyannote-audio"
else:
url_1 = "https://huggingface.co/Revai/reverb-diarization-v1"
url_2 = "https://huggingface.co/csukuangfj/sherpa-onnx-reverb-diarization-v1"
license_url = (
"https://huggingface.co/Revai/reverb-diarization-v1/blob/main/LICENSE"
)
model_author = "Revai"
meta_data = {
"num_speakers": len(model.specifications.classes),
"powerset_max_classes": model.specifications.powerset_max_classes,
"num_classes": model.dimension,
"sample_rate": sample_rate,
"window_size": window_size,
"receptive_field_size": receptive_field_size,
"receptive_field_shift": receptive_field_shift,
"model_type": "pyannote-segmentation-3.0",
"version": "1",
"model_author": model_author,
"maintainer": "k2-fsa",
"url_1": url_1,
"url_2": url_2,
"license": license_url,
}
add_meta_data(filename=filename, meta_data=meta_data)
print("Generate int8 quantization models")
filename_int8 = "model.int8.onnx"
quantize_dynamic(
model_input=filename,
model_output=filename_int8,
weight_type=QuantType.QUInt8,
)
print(f"Saved to {filename} and {filename_int8}")
if __name__ == "__main__":
main()