File size: 51,097 Bytes
efec1c4 2a0dcbe d1931b1 2a0dcbe d1931b1 2a0dcbe efec1c4 2f25aea efec1c4 10d3f10 c0e7b19 2f25aea 624349c efec1c4 2f25aea c0e7b19 efec1c4 2f25aea 39ab62e 2f25aea 39ab62e 9169bfd efec1c4 2f25aea feeecd0 efec1c4 acd253c efec1c4 2f25aea efec1c4 d6e949b efec1c4 2f25aea efec1c4 f115e8f efec1c4 d6e949b efec1c4 2f25aea efec1c4 2f25aea efec1c4 f115e8f efec1c4 d6e949b 3e24216 efec1c4 17f036a 2a0dcbe efec1c4 2a0dcbe acd253c 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe d6e949b 2a0dcbe efec1c4 d6e949b 2a0dcbe efec1c4 2a0dcbe 2f25aea 2a0dcbe 2f25aea 2a0dcbe efec1c4 2a0dcbe f115e8f 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe 3e24216 efec1c4 c0e7b19 efec1c4 acd253c 2f25aea acd253c 2f25aea acd253c 2f25aea efec1c4 2f25aea efec1c4 f115e8f efec1c4 d6e949b 3e24216 efec1c4 d6e949b efec1c4 d6e949b efec1c4 acd253c 3e24216 acd253c d6e949b 3e24216 d6e949b 3e24216 d6e949b acd253c efec1c4 acd253c 2f25aea acd253c efec1c4 acd253c efec1c4 2f25aea acd253c 2f25aea acd253c 2f25aea efec1c4 feeecd0 2f25aea acd253c feeecd0 0d675a3 2f25aea feeecd0 2f25aea efec1c4 bb217cf efec1c4 d6e949b 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea efec1c4 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea 9169bfd 2f25aea efec1c4 2f25aea 9169bfd efec1c4 9169bfd 2f25aea efec1c4 2f25aea efec1c4 2f25aea 5fcf2b8 2f25aea 5fcf2b8 2f25aea f115e8f 2f25aea f115e8f efec1c4 2f25aea efec1c4 17f036a efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2a0dcbe efec1c4 2f25aea 0d675a3 2f25aea d6e949b 3e24216 d6e949b 3e24216 d6e949b 2f25aea efec1c4 bcaf65e 2f25aea acd253c 2f25aea f115e8f 2f25aea d6e949b 2f25aea 3e24216 2f25aea d6e949b 2f25aea 3e24216 2f25aea d6e949b 2f25aea d6e949b 2f25aea d6e949b 3e24216 d6e949b 3e24216 d6e949b 3e24216 d6e949b 3e24216 d6e949b 2f25aea 3e24216 2f25aea 3e24216 2f25aea d6e949b 2f25aea 3e24216 2f25aea d6e949b 2f25aea 3e24216 2f25aea 3e24216 2f25aea 3e24216 2f25aea 3e24216 2f25aea 316d817 2f25aea acd253c 2f25aea d6e949b 2f25aea d6e949b 2f25aea d6e949b 2f25aea 3e24216 d6e949b 2f25aea 3e24216 2f25aea bcaf65e 2f25aea d6e949b 2f25aea d6e949b 2f25aea 3e24216 2f25aea bcaf65e 2f25aea bcaf65e 2f25aea bcaf65e 2f25aea d6e949b 2f25aea bcaf65e d6e949b bcaf65e d6e949b bcaf65e d6e949b bcaf65e 2f25aea bcaf65e 2f25aea acd253c bcaf65e 2f25aea acd253c 2f25aea 428e3b0 2f25aea bcaf65e 2f25aea 428e3b0 2f25aea acd253c 2f25aea bcaf65e 2f25aea bcaf65e 2f25aea bcaf65e 2f25aea bcaf65e 2f25aea 10d3f10 2f25aea bcaf65e 2f25aea acd253c d6e949b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 |
"""
Geneformer in silico perturber.
**Usage:**
.. code-block :: python
>>> from geneformer import InSilicoPerturber
>>> isp = InSilicoPerturber(perturb_type="delete",
... perturb_rank_shift=None,
... genes_to_perturb="all",
... model_type="CellClassifier",
... num_classes=0,
... emb_mode="cell",
... filter_data={"cell_type":["cardiomyocyte"]},
... cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]},
... state_embs_dict ={"nf": emb_nf, "hcm": emb_hcm, "dcm": emb_dcm, "other1": emb_other1, "other2": emb_other2},
... max_ncells=None,
... emb_layer=0,
... forward_batch_size=100,
... nproc=16)
>>> isp.perturb_data("path/to/model",
... "path/to/input_data",
... "path/to/output_directory",
... "output_prefix")
**Description:**
| Performs in silico perturbation (e.g. deletion or overexpression) of defined set of genes or all genes in sample of cells.
| Outputs impact of perturbation on cell or gene embeddings.
| Output files are analyzed with ``in_silico_perturber_stats``.
"""
import logging
# imports
import os
import pickle
from collections import defaultdict
from typing import List
from multiprocess import set_start_method
import seaborn as sns
import torch
from datasets import Dataset
from tqdm.auto import trange
from . import perturber_utils as pu
from .emb_extractor import get_embs
from .perturber_utils import TOKEN_DICTIONARY_FILE
sns.set()
logger = logging.getLogger(__name__)
class InSilicoPerturber:
valid_option_dict = {
"perturb_type": {"delete", "overexpress", "inhibit", "activate"},
"perturb_rank_shift": {None, 1, 2, 3},
"genes_to_perturb": {"all", list},
"combos": {0, 1},
"anchor_gene": {None, str},
"model_type": {"Pretrained", "GeneClassifier", "CellClassifier"},
"num_classes": {int},
"emb_mode": {"cls", "cell", "cls_and_gene", "cell_and_gene"},
"cell_emb_style": {"mean_pool"},
"filter_data": {None, dict},
"cell_states_to_model": {None, dict},
"state_embs_dict": {None, dict},
"max_ncells": {None, int},
"cell_inds_to_perturb": {"all", dict},
"emb_layer": {-1, 0},
"token_dictionary_file" : {None, str},
"forward_batch_size": {int},
"nproc": {int},
}
def __init__(
self,
perturb_type="delete",
perturb_rank_shift=None,
genes_to_perturb="all",
combos=0,
anchor_gene=None,
model_type="Pretrained",
num_classes=0,
emb_mode="cell",
cell_emb_style="mean_pool",
filter_data=None,
cell_states_to_model=None,
state_embs_dict=None,
max_ncells=None,
cell_inds_to_perturb="all",
emb_layer=-1,
forward_batch_size=100,
nproc=4,
token_dictionary_file=None,
clear_mem_ncells=1000,
):
"""
Initialize in silico perturber.
**Parameters:**
perturb_type : {"delete", "overexpress", "inhibit", "activate"}
| Type of perturbation.
| "delete": delete gene from rank value encoding
| "overexpress": move gene to front of rank value encoding
| *(TBA)* "inhibit": move gene to lower quartile of rank value encoding
| *(TBA)* "activate": move gene to higher quartile of rank value encoding
*(TBA)* perturb_rank_shift : None, {1,2,3}
| Number of quartiles by which to shift rank of gene.
| For example, if perturb_type="activate" and perturb_rank_shift=1:
| genes in 4th quartile will move to middle of 3rd quartile.
| genes in 3rd quartile will move to middle of 2nd quartile.
| genes in 2nd quartile will move to middle of 1st quartile.
| genes in 1st quartile will move to front of rank value encoding.
| For example, if perturb_type="inhibit" and perturb_rank_shift=2:
| genes in 1st quartile will move to middle of 3rd quartile.
| genes in 2nd quartile will move to middle of 4th quartile.
| genes in 3rd or 4th quartile will move to bottom of rank value encoding.
genes_to_perturb : "all", list
| Default is perturbing each gene detected in each cell in the dataset.
| Otherwise, may provide a list of ENSEMBL IDs of genes to perturb.
| If gene list is provided, then perturber will only test perturbing them all together
| (rather than testing each possible combination of the provided genes).
combos : {0,1}
| Whether to perturb genes individually (0) or in pairs (1).
anchor_gene : None, str
| ENSEMBL ID of gene to use as anchor in combination perturbations.
| For example, if combos=1 and anchor_gene="ENSG00000148400":
| anchor gene will be perturbed in combination with each other gene.
model_type : {"Pretrained", "GeneClassifier", "CellClassifier"}
| Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
num_classes : int
| If model is a gene or cell classifier, specify number of classes it was trained to classify.
| For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
emb_mode : {"cls", "cell", "cls_and_gene","cell_and_gene"}
| Whether to output impact of perturbation on CLS token, cell, and/or gene embeddings.
| Gene embedding shifts only available as compared to original cell, not comparing to goal state.
cell_emb_style : "mean_pool"
| Method for summarizing cell embeddings if not using CLS token.
| Currently only option is mean pooling of gene embeddings for given cell.
filter_data : None, dict
| Default is to use all input data for in silico perturbation study.
| Otherwise, dictionary specifying .dataset column name and list of values to filter by.
cell_states_to_model : None, dict
| Cell states to model if testing perturbations that achieve goal state change.
| Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
| state_key: key specifying name of column in .dataset that defines the start/goal states
| start_state: value in the state_key column that specifies the start state
| goal_state: value in the state_key column taht specifies the goal end state
| alt_states: list of values in the state_key column that specify the alternate end states
| For example: {"state_key": "disease",
| "start_state": "dcm",
| "goal_state": "nf",
| "alt_states": ["hcm", "other1", "other2"]}
state_embs_dict : None, dict
| Embedding positions of each cell state to model shifts from/towards (e.g. mean or median).
| Dictionary with keys specifying each possible cell state to model.
| Values are target embedding positions as torch.tensor.
| For example: {"nf": emb_nf,
| "hcm": emb_hcm,
| "dcm": emb_dcm,
| "other1": emb_other1,
| "other2": emb_other2}
max_ncells : None, int
| Maximum number of cells to test.
| If None, will test all cells.
cell_inds_to_perturb : "all", list
| Default is perturbing each cell in the dataset.
| Otherwise, may provide a dict of indices of cells to perturb with keys start_ind and end_ind.
| start_ind: the first index to perturb.
| end_ind: the last index to perturb (exclusive).
| Indices will be selected *after* the filter_data criteria and sorting.
| Useful for splitting extremely large datasets across separate GPUs.
emb_layer : {-1, 0}
| Embedding layer to use for quantification.
| 0: last layer (recommended for questions closely tied to model's training objective)
| -1: 2nd to last layer (recommended for questions requiring more general representations)
forward_batch_size : int
| Batch size for forward pass.
nproc : int
| Number of CPU processes to use.
token_dictionary_file : Path
| Path to pickle file containing token dictionary (Ensembl ID:token).
clear_mem_ncells : int
| Clear memory every n cells.
"""
try:
set_start_method("spawn")
except RuntimeError:
pass
self.perturb_type = perturb_type
self.perturb_rank_shift = perturb_rank_shift
self.genes_to_perturb = genes_to_perturb
self.combos = combos
self.anchor_gene = anchor_gene
if self.genes_to_perturb == "all":
self.perturb_group = False
else:
self.perturb_group = True
if (self.anchor_gene is not None) or (self.combos != 0):
self.anchor_gene = None
self.combos = 0
logger.warning(
"anchor_gene set to None and combos set to 0. "
"If providing list of genes to perturb, "
"list of genes_to_perturb will be perturbed together, "
"without anchor gene or combinations."
)
self.model_type = model_type
self.num_classes = num_classes
self.emb_mode = emb_mode
self.cell_emb_style = cell_emb_style
self.filter_data = filter_data
self.cell_states_to_model = cell_states_to_model
self.state_embs_dict = state_embs_dict
self.max_ncells = max_ncells
self.cell_inds_to_perturb = cell_inds_to_perturb
self.emb_layer = emb_layer
self.forward_batch_size = forward_batch_size
self.nproc = nproc
self.token_dictionary_file = token_dictionary_file
self.clear_mem_ncells = clear_mem_ncells
self.validate_options()
# load token dictionary (Ensembl IDs:token)
if self.token_dictionary_file is None:
token_dictionary_file = TOKEN_DICTIONARY_FILE
with open(token_dictionary_file, "rb") as f:
self.gene_token_dict = pickle.load(f)
self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()}
self.pad_token_id = self.gene_token_dict.get("<pad>")
self.cls_token_id = self.gene_token_dict.get("<cls>")
self.eos_token_id = self.gene_token_dict.get("<eos>")
# Identify if special token is present in the token dictionary
if (self.cls_token_id is not None) and (self.eos_token_id is not None):
self.special_token = True
else:
if "cls" in self.emb_mode:
logger.error(f"emb_mode set to {self.emb_mode} but <cls> or <eos> token not in token dictionary.")
raise
self.special_token = False
if self.anchor_gene is None:
self.anchor_token = None
else:
try:
self.anchor_token = [self.gene_token_dict[self.anchor_gene]]
except KeyError:
logger.error(f"Anchor gene {self.anchor_gene} not in token dictionary.")
raise
if self.genes_to_perturb == "all":
self.tokens_to_perturb = "all"
else:
missing_genes = [
gene
for gene in self.genes_to_perturb
if gene not in self.gene_token_dict.keys()
]
if len(missing_genes) == len(self.genes_to_perturb):
logger.error(
"None of the provided genes to perturb are in token dictionary."
)
raise
elif len(missing_genes) > 0:
logger.warning(
f"Genes to perturb {missing_genes} are not in token dictionary."
)
self.tokens_to_perturb = [
self.gene_token_dict.get(gene) for gene in self.genes_to_perturb
]
def validate_options(self):
# first disallow options under development
if self.perturb_type in ["inhibit", "activate"]:
logger.error(
"In silico inhibition and activation currently under development. "
"Current valid options for 'perturb_type': 'delete' or 'overexpress'"
)
raise
if (self.combos > 0) and (self.anchor_gene is None):
logger.error(
"Combination perturbation without anchor gene is currently under development. "
"Currently, must provide anchor gene for combination perturbation."
)
raise
# confirm arguments are within valid options and compatible with each other
for attr_name, valid_options in self.valid_option_dict.items():
attr_value = self.__dict__[attr_name]
if type(attr_value) not in {list, dict}:
if attr_value in valid_options:
continue
if attr_name in ["anchor_gene"]:
if type(attr_name) in {str}:
continue
valid_type = False
for option in valid_options:
if (option in [bool, int, list, dict, str]) and isinstance(
attr_value, option
):
valid_type = True
break
if valid_type:
continue
logger.error(
f"Invalid option for {attr_name}. "
f"Valid options for {attr_name}: {valid_options}"
)
raise
if self.perturb_type in ["delete", "overexpress"]:
if self.perturb_rank_shift is not None:
if self.perturb_type == "delete":
logger.warning(
"perturb_rank_shift set to None. "
"If perturb type is delete then gene is deleted entirely "
"rather than shifted by quartile"
)
elif self.perturb_type == "overexpress":
logger.warning(
"perturb_rank_shift set to None. "
"If perturb type is overexpress then gene is moved to front "
"of rank value encoding rather than shifted by quartile"
)
self.perturb_rank_shift = None
if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"):
self.emb_mode = "cell"
logger.warning(
"emb_mode set to 'cell'. "
"Currently, analysis with anchor gene "
"only outputs effect on cell embeddings."
)
if self.cell_states_to_model is not None:
pu.validate_cell_states_to_model(self.cell_states_to_model)
if self.anchor_gene is not None:
self.anchor_gene = None
logger.warning(
"anchor_gene set to None. "
"Currently, anchor gene not available "
"when modeling multiple cell states."
)
if self.state_embs_dict is None:
logger.error(
"state_embs_dict must be provided for mode with cell_states_to_model. "
"Format is dictionary with keys specifying each possible cell state to model. "
"Values are target embedding positions as torch.tensor."
)
raise
for state_emb in self.state_embs_dict.values():
if not torch.is_tensor(state_emb):
logger.error(
"state_embs_dict must be dictionary with values being torch.tensor."
)
raise
keys_absent = []
for k, v in self.cell_states_to_model.items():
if (k == "start_state") or (k == "goal_state"):
if v not in self.state_embs_dict.keys():
keys_absent.append(v)
if k == "alt_states":
for state in v:
if state not in self.state_embs_dict.keys():
keys_absent.append(state)
if len(keys_absent) > 0:
logger.error(
"Each start_state, goal_state, and alt_states in cell_states_to_model "
"must be a key in state_embs_dict with the value being "
"the state's embedding position as torch.tensor. "
f"Missing keys: {keys_absent}"
)
raise
if self.perturb_type in ["inhibit", "activate"]:
if self.perturb_rank_shift is None:
logger.error(
"If perturb_type is inhibit or activate then "
"quartile to shift by must be specified."
)
raise
if self.filter_data is not None:
for key, value in self.filter_data.items():
if not isinstance(value, list):
self.filter_data[key] = [value]
logger.warning(
"Values in filter_data dict must be lists. "
f"Changing {key} value to list ([{value}])."
)
if self.cell_inds_to_perturb != "all":
if set(self.cell_inds_to_perturb.keys()) != {"start", "end"}:
logger.error(
"If cell_inds_to_perturb is a dictionary, keys must be 'start' and 'end'."
)
raise
if (
self.cell_inds_to_perturb["start"] < 0
or self.cell_inds_to_perturb["end"] < 0
):
logger.error("cell_inds_to_perturb must be positive.")
raise
def perturb_data(
self, model_directory, input_data_file, output_directory, output_prefix
):
"""
Perturb genes in input data and save as results in output_directory.
**Parameters:**
model_directory : Path
| Path to directory containing model
input_data_file : Path
| Path to directory containing .dataset inputs
output_directory : Path
| Path to directory where perturbation data will be saved as batched pickle files
output_prefix : str
| Prefix for output files
"""
### format output path ###
output_path_prefix = os.path.join(
output_directory, f"in_silico_{self.perturb_type}_{output_prefix}"
)
### load model and define parameters ###
model = pu.load_model(
self.model_type, self.num_classes, model_directory, mode="eval"
)
self.max_len = pu.get_model_input_size(model)
layer_to_quant = pu.quant_layers(model) + self.emb_layer
### filter input data ###
# general filtering of input data based on filter_data argument
filtered_input_data = pu.load_and_filter(
self.filter_data, self.nproc, input_data_file
)
# Ensure emb_mode is cls if first token of the filtered input data is cls token
if self.special_token:
if (filtered_input_data["input_ids"][0][0] == self.cls_token_id) and ("cls" not in self.emb_mode):
logger.error(
"Emb mode 'cls' or 'cls_and_gene' required when first token is <cls>."
)
raise
if ("cls" in self.emb_mode):
if (filtered_input_data["input_ids"][0][0] != self.cls_token_id) or (filtered_input_data["input_ids"][0][-1] != self.eos_token_id):
logger.error(
"Emb mode 'cls' and 'cls_and_gene' require that first token is <cls> and last token is <eos>."
)
raise
filtered_input_data = self.apply_additional_filters(filtered_input_data)
if self.perturb_group is True:
self.isp_perturb_set(
model, filtered_input_data, layer_to_quant, output_path_prefix
)
else:
if (self.special_token) and ("cls" in self.emb_mode):
self.isp_perturb_all_special(
model, filtered_input_data, layer_to_quant, output_path_prefix
)
else:
self.isp_perturb_all(
model, filtered_input_data, layer_to_quant, output_path_prefix
)
def apply_additional_filters(self, filtered_input_data):
# additional filtering of input data dependent on isp mode
if self.cell_states_to_model is not None:
# filter for cells with start_state and log result
filtered_input_data = pu.filter_data_by_start_state(
filtered_input_data, self.cell_states_to_model, self.nproc
)
if (self.tokens_to_perturb != "all") and (self.perturb_type != "overexpress"):
# filter for cells with tokens_to_perturb and log result
filtered_input_data = pu.filter_data_by_tokens_and_log(
filtered_input_data,
self.tokens_to_perturb,
self.nproc,
"genes_to_perturb",
)
if self.anchor_token is not None:
# filter for cells with anchor gene and log result
filtered_input_data = pu.filter_data_by_tokens_and_log(
filtered_input_data, self.anchor_token, self.nproc, "anchor_gene"
)
# downsample and sort largest to smallest to encounter memory constraints earlier
filtered_input_data = pu.downsample_and_sort(
filtered_input_data, self.max_ncells
)
# slice dataset if cells_inds_to_perturb is not "all"
if self.cell_inds_to_perturb != "all":
filtered_input_data = pu.slice_by_inds_to_perturb(
filtered_input_data, self.cell_inds_to_perturb
)
return filtered_input_data
def isp_perturb_set(
self,
model,
filtered_input_data: Dataset,
layer_to_quant: int,
output_path_prefix: str,
):
def make_group_perturbation_batch(example):
example_input_ids = example["input_ids"]
example["tokens_to_perturb"] = self.tokens_to_perturb
indices_to_perturb = [
example_input_ids.index(token) if token in example_input_ids else None
for token in self.tokens_to_perturb
]
indices_to_perturb = [
item for item in indices_to_perturb if item is not None
]
if len(indices_to_perturb) > 0:
example["perturb_index"] = indices_to_perturb
else:
# -100 indicates tokens to overexpress are not present in rank value encoding
example["perturb_index"] = [-100]
if self.perturb_type == "delete":
example = pu.delete_indices(example)
elif self.perturb_type == "overexpress":
example = pu.overexpress_tokens(example, self.max_len, self.special_token)
example["n_overflow"] = pu.calc_n_overflow(
self.max_len,
example["length"],
self.tokens_to_perturb,
indices_to_perturb,
)
return example
total_batch_length = len(filtered_input_data)
if self.cell_states_to_model is None:
cos_sims_dict = defaultdict(list)
else:
cos_sims_dict = {
state: defaultdict(list)
for state in pu.get_possible_states(self.cell_states_to_model)
}
perturbed_data = filtered_input_data.map(
make_group_perturbation_batch, num_proc=self.nproc
)
if self.perturb_type == "overexpress":
filtered_input_data = filtered_input_data.add_column(
"n_overflow", perturbed_data["n_overflow"]
)
# remove overflow genes from original data so that embeddings are comparable
# i.e. if original cell has genes 0:2047 and you want to overexpress new gene 2048,
# then the perturbed cell will be 2048+0:2046 so we compare it to an original cell 0:2046.
# (otherwise we will be modeling the effect of both deleting 2047 and adding 2048,
# rather than only adding 2048)
if self.special_token:
filtered_input_data = filtered_input_data.map(
pu.truncate_by_n_overflow_special, num_proc=self.nproc
)
else:
filtered_input_data = filtered_input_data.map(
pu.truncate_by_n_overflow, num_proc=self.nproc
)
if (self.emb_mode == "cell_and_gene") or (self.emb_mode == "cls_and_gene"):
stored_gene_embs_dict = defaultdict(list)
# iterate through batches
for i in trange(0, total_batch_length, self.forward_batch_size):
max_range = min(i + self.forward_batch_size, total_batch_length)
inds_select = [i for i in range(i, max_range)]
minibatch = filtered_input_data.select(inds_select)
perturbation_batch = perturbed_data.select(inds_select)
if self.cell_emb_style == "mean_pool":
full_original_emb = get_embs(
model,
minibatch,
"gene",
layer_to_quant,
self.pad_token_id,
self.forward_batch_size,
self.token_gene_dict,
summary_stat=None,
silent=True,
)
indices_to_perturb = perturbation_batch["perturb_index"]
# remove indices that were perturbed
original_emb = pu.remove_perturbed_indices_set(
full_original_emb,
self.perturb_type,
indices_to_perturb,
self.tokens_to_perturb,
minibatch["length"],
)
full_perturbation_emb = get_embs(
model,
perturbation_batch,
"gene",
layer_to_quant,
self.pad_token_id,
self.forward_batch_size,
self.token_gene_dict,
summary_stat=None,
silent=True,
)
if "cls" not in self.emb_mode:
start = 0
end_add = 0
end = None
else:
start = 1
end_add = -1
end = -1
# remove overexpressed genes and cls/eos
original_emb = original_emb[
:, start : end, :
]
if self.perturb_type == "overexpress":
perturbation_emb = full_perturbation_emb[
:, start+len(self.tokens_to_perturb) : end, :
]
elif self.perturb_type == "delete":
perturbation_emb = full_perturbation_emb[
:, start : max(perturbation_batch["length"])+end_add, :
]
n_perturbation_genes = perturbation_emb.size()[1]
# if no goal states, the cosine similarities are the mean of gene cosine similarities
if (
self.cell_states_to_model is None
or self.emb_mode == "cell_and_gene"
or self.emb_mode == "cls_and_gene"
):
gene_cos_sims = pu.quant_cos_sims(
perturbation_emb,
original_emb,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="gene",
)
# if there are goal states, the cosine similarities are the cell cosine similarities
if self.cell_states_to_model is not None:
if "cls" not in self.emb_mode:
original_cell_emb = pu.mean_nonpadding_embs(
full_original_emb,
torch.tensor(minibatch["length"], device="cuda"),
dim=1,
)
perturbation_cell_emb = pu.mean_nonpadding_embs(
full_perturbation_emb,
torch.tensor(perturbation_batch["length"], device="cuda"),
dim=1,
)
else:
# get cls emb
original_cell_emb = full_original_emb[:,0,:]
perturbation_cell_emb = full_perturbation_emb[:,0,:]
cell_cos_sims = pu.quant_cos_sims(
perturbation_cell_emb,
original_cell_emb,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="cell",
)
# get cosine similarities in gene embeddings
# if getting gene embeddings, need gene names
if (self.emb_mode == "cell_and_gene") or (self.emb_mode == "cls_and_gene"):
gene_list = minibatch["input_ids"]
# need to truncate gene_list
genes_to_exclude = self.tokens_to_perturb
if self.emb_mode == "cls_and_gene":
genes_to_exclude = genes_to_exclude + [self.cls_token_id, self.eos_token_id]
gene_list = [
[g for g in genes if g not in genes_to_exclude][
:n_perturbation_genes
]
for genes in gene_list
]
# remove CLS and EOS if present
# if "cls" in self.emb_mode:
# cls_token_id = self.gene_token_dict["<cls>"]
# eos_token_id = self.gene_token_dict["<eos>"]
# gene_list = [e for e in gene_list if e not in [cls_token_id,eos_token_id]]
for cell_i, genes in enumerate(gene_list):
for gene_j, affected_gene in enumerate(genes):
if len(self.genes_to_perturb) > 1:
tokens_to_perturb = tuple(self.tokens_to_perturb)
else:
tokens_to_perturb = self.tokens_to_perturb[0]
# fill in the gene cosine similarities
try:
stored_gene_embs_dict[
(tokens_to_perturb, affected_gene)
].append(gene_cos_sims[cell_i, gene_j].item())
except KeyError:
stored_gene_embs_dict[
(tokens_to_perturb, affected_gene)
] = gene_cos_sims[cell_i, gene_j].item()
else:
gene_list = None
if self.cell_states_to_model is None:
# calculate the mean of the gene cosine similarities for cell shift
# tensor of nonpadding lengths for each cell
if self.perturb_type == "overexpress":
# subtract number of genes that were overexpressed
# since they are removed before getting cos sims
n_overexpressed = len(self.tokens_to_perturb)
nonpadding_lens = [
x - n_overexpressed for x in perturbation_batch["length"]
]
else:
nonpadding_lens = perturbation_batch["length"]
if "cls" not in self.emb_mode:
cos_sims_data = pu.mean_nonpadding_embs(
gene_cos_sims, torch.tensor(nonpadding_lens, device="cuda")
)
else:
original_cls_emb = full_original_emb[:,0,:]
perturbation_cls_emb = full_perturbation_emb[:,0,:]
cos_sims_data = pu.quant_cos_sims(
perturbation_cls_emb,
original_cls_emb,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="cell",
)
cos_sims_dict = self.update_perturbation_dictionary(
cos_sims_dict,
cos_sims_data,
filtered_input_data,
indices_to_perturb,
gene_list,
)
else:
cos_sims_data = cell_cos_sims
for state in cos_sims_dict.keys():
cos_sims_dict[state] = self.update_perturbation_dictionary(
cos_sims_dict[state],
cos_sims_data[state],
filtered_input_data,
indices_to_perturb,
gene_list,
)
del minibatch
del perturbation_batch
del full_original_emb
del original_emb
del full_perturbation_emb
del perturbation_emb
del cos_sims_data
if ("cls" in self.emb_mode) and (self.cell_states_to_model is None):
del original_cls_emb
del perturbation_cls_emb
torch.cuda.empty_cache()
pu.write_perturbation_dictionary(
cos_sims_dict,
f"{output_path_prefix}_cell_embs_dict_{self.tokens_to_perturb}",
)
if (self.emb_mode == "cell_and_gene") or (self.emb_mode == "cls_and_gene"):
pu.write_perturbation_dictionary(
stored_gene_embs_dict,
f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}",
)
def isp_perturb_all(
self,
model,
filtered_input_data: Dataset,
layer_to_quant: int,
output_path_prefix: str,
):
pickle_batch = -1
if self.cell_states_to_model is None:
cos_sims_dict = defaultdict(list)
else:
cos_sims_dict = {
state: defaultdict(list)
for state in pu.get_possible_states(self.cell_states_to_model)
}
if self.emb_mode == "cell_and_gene":
stored_gene_embs_dict = defaultdict(list)
for i in trange(len(filtered_input_data)):
example_cell = filtered_input_data.select([i])
full_original_emb = get_embs(
model,
example_cell,
"gene",
layer_to_quant,
self.pad_token_id,
self.forward_batch_size,
self.token_gene_dict,
summary_stat=None,
silent=True,
)
# gene_list is used to assign cos sims back to genes
# need to remove the anchor gene
gene_list = example_cell["input_ids"][0][:]
if self.anchor_token is not None:
for token in self.anchor_token:
gene_list.remove(token)
perturbation_batch, indices_to_perturb = pu.make_perturbation_batch(
example_cell,
self.perturb_type,
self.tokens_to_perturb,
self.anchor_token,
self.combos,
self.nproc,
)
full_perturbation_emb = get_embs(
model,
perturbation_batch,
"gene",
layer_to_quant,
self.pad_token_id,
self.forward_batch_size,
self.token_gene_dict,
summary_stat=None,
silent=True,
)
num_inds_perturbed = 1 + self.combos
if self.perturb_type == "overexpress":
perturbation_emb = full_perturbation_emb[:, 0+num_inds_perturbed:None, :]
elif self.perturb_type == "delete":
perturbation_emb = full_perturbation_emb
original_batch = pu.make_comparison_batch(
full_original_emb, indices_to_perturb, perturb_group=False
)
if self.cell_states_to_model is None or self.emb_mode == "cell_and_gene":
gene_cos_sims = pu.quant_cos_sims(
perturbation_emb,
original_batch,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="gene",
)
if self.cell_states_to_model is not None:
original_cell_emb = pu.compute_nonpadded_cell_embedding(
full_original_emb, "mean_pool"
)
perturbation_cell_emb = pu.compute_nonpadded_cell_embedding(
full_perturbation_emb, "mean_pool"
)
cell_cos_sims = pu.quant_cos_sims(
perturbation_cell_emb,
original_cell_emb,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="cell",
)
if self.emb_mode == "cell_and_gene":
# remove perturbed index for gene list
perturbed_gene_dict = {
gene: gene_list[:i] + gene_list[i + 1 :]
for i, gene in enumerate(gene_list)
}
for perturbation_i, perturbed_gene in enumerate(gene_list):
for gene_j, affected_gene in enumerate(
perturbed_gene_dict[perturbed_gene]
):
try:
stored_gene_embs_dict[
(perturbed_gene, affected_gene)
].append(gene_cos_sims[perturbation_i, gene_j].item())
except KeyError:
stored_gene_embs_dict[
(perturbed_gene, affected_gene)
] = gene_cos_sims[perturbation_i, gene_j].item()
if self.cell_states_to_model is None:
cos_sims_data = torch.mean(gene_cos_sims, dim=1)
cos_sims_dict = self.update_perturbation_dictionary(
cos_sims_dict,
cos_sims_data,
filtered_input_data,
indices_to_perturb,
gene_list,
)
else:
cos_sims_data = cell_cos_sims
for state in cos_sims_dict.keys():
cos_sims_dict[state] = self.update_perturbation_dictionary(
cos_sims_dict[state],
cos_sims_data[state],
filtered_input_data,
indices_to_perturb,
gene_list,
)
# save dict to disk every 100 cells
if i % self.clear_mem_ncells/10 == 0:
pu.write_perturbation_dictionary(
cos_sims_dict,
f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}",
)
if self.emb_mode == "cell_and_gene":
pu.write_perturbation_dictionary(
stored_gene_embs_dict,
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
)
# reset and clear memory every 1000 cells
if i % self.clear_mem_ncells == 0:
pickle_batch += 1
if self.cell_states_to_model is None:
cos_sims_dict = defaultdict(list)
else:
cos_sims_dict = {
state: defaultdict(list)
for state in pu.get_possible_states(self.cell_states_to_model)
}
if self.emb_mode == "cell_and_gene":
stored_gene_embs_dict = defaultdict(list)
del full_original_emb
del perturbation_batch
del full_perturbation_emb
del perturbation_emb
del original_batch
torch.cuda.empty_cache()
pu.write_perturbation_dictionary(
cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}"
)
if self.emb_mode == "cell_and_gene":
pu.write_perturbation_dictionary(
stored_gene_embs_dict,
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
)
def isp_perturb_all_special(
self,
model,
filtered_input_data: Dataset,
layer_to_quant: int,
output_path_prefix: str,
):
pickle_batch = -1
if self.cell_states_to_model is None:
cos_sims_dict = defaultdict(list)
else:
cos_sims_dict = {
state: defaultdict(list)
for state in pu.get_possible_states(self.cell_states_to_model)
}
if self.emb_mode == "cls_and_gene":
stored_gene_embs_dict = defaultdict(list)
for i in trange(len(filtered_input_data)):
example_cell = filtered_input_data.select([i])
full_original_emb = get_embs(
model,
example_cell,
"gene",
layer_to_quant,
self.pad_token_id,
self.forward_batch_size,
self.token_gene_dict,
summary_stat=None,
silent=True,
)
# gene_list is used to assign cos sims back to genes
# need to remove the anchor gene
gene_list = example_cell["input_ids"][0][:]
if self.anchor_token is not None:
for token in self.anchor_token:
gene_list.remove(token)
# Also exclude special token from gene_list
if self.special_token:
for token in [self.cls_token_id, self.eos_token_id]:
gene_list.remove(token)
perturbation_batch, indices_to_perturb = pu.make_perturbation_batch_special(
example_cell,
self.perturb_type,
self.tokens_to_perturb,
self.anchor_token,
self.combos,
self.nproc,
)
full_perturbation_emb = get_embs(
model,
perturbation_batch,
"gene",
layer_to_quant,
self.pad_token_id,
self.forward_batch_size,
self.token_gene_dict,
summary_stat=None,
silent=True,
)
num_inds_perturbed = 1 + self.combos
# need to remove overexpressed gene and cls/eos to quantify cosine shifts
if self.perturb_type == "overexpress":
perturbation_emb = full_perturbation_emb[:, 1+num_inds_perturbed:-1, :]
elif self.perturb_type == "delete":
perturbation_emb = full_perturbation_emb[:, 1:-1, :]
original_batch = pu.make_comparison_batch(
full_original_emb, indices_to_perturb, perturb_group=False
)
original_batch = original_batch[:, 1:-1, :]
if self.cell_states_to_model is None or self.emb_mode == "cls_and_gene":
gene_cos_sims = pu.quant_cos_sims(
perturbation_emb,
original_batch,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="gene",
)
if self.cell_states_to_model is not None:
# get cls emb
original_cell_emb = full_original_emb[:,0,:]
perturbation_cell_emb = full_perturbation_emb[:,0,:]
cell_cos_sims = pu.quant_cos_sims(
perturbation_cell_emb,
original_cell_emb,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="cell",
)
if self.emb_mode == "cls_and_gene":
# remove perturbed index for gene list
perturbed_gene_dict = {
gene: gene_list[:i] + gene_list[i + 1 :]
for i, gene in enumerate(gene_list)
}
for perturbation_i, perturbed_gene in enumerate(gene_list):
for gene_j, affected_gene in enumerate(
perturbed_gene_dict[perturbed_gene]
):
try:
stored_gene_embs_dict[
(perturbed_gene, affected_gene)
].append(gene_cos_sims[perturbation_i, gene_j].item())
except KeyError:
stored_gene_embs_dict[
(perturbed_gene, affected_gene)
] = gene_cos_sims[perturbation_i, gene_j].item()
if self.cell_states_to_model is None:
original_cls_emb = full_original_emb[:,0,:]
perturbation_cls_emb = full_perturbation_emb[:,0,:]
cos_sims_data = pu.quant_cos_sims(
perturbation_cls_emb,
original_cls_emb,
self.cell_states_to_model,
self.state_embs_dict,
emb_mode="cell",
)
cos_sims_dict = self.update_perturbation_dictionary(
cos_sims_dict,
cos_sims_data,
filtered_input_data,
indices_to_perturb,
gene_list,
)
else:
cos_sims_data = cell_cos_sims
for state in cos_sims_dict.keys():
cos_sims_dict[state] = self.update_perturbation_dictionary(
cos_sims_dict[state],
cos_sims_data[state],
filtered_input_data,
indices_to_perturb,
gene_list,
)
# save dict to disk every 100 cells
if i % self.clear_mem_ncells/10 == 0:
pu.write_perturbation_dictionary(
cos_sims_dict,
f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}",
)
if self.emb_mode == "cls_and_gene":
pu.write_perturbation_dictionary(
stored_gene_embs_dict,
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
)
# reset and clear memory every 1000 cells
if i % self.clear_mem_ncells == 0:
pickle_batch += 1
if self.cell_states_to_model is None:
cos_sims_dict = defaultdict(list)
else:
cos_sims_dict = {
state: defaultdict(list)
for state in pu.get_possible_states(self.cell_states_to_model)
}
if self.emb_mode == "cls_and_gene":
stored_gene_embs_dict = defaultdict(list)
del full_original_emb
del perturbation_batch
del full_perturbation_emb
del perturbation_emb
del original_batch
torch.cuda.empty_cache()
pu.write_perturbation_dictionary(
cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}"
)
if self.emb_mode == "cls_and_gene":
pu.write_perturbation_dictionary(
stored_gene_embs_dict,
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
)
def update_perturbation_dictionary(
self,
cos_sims_dict: defaultdict,
cos_sims_data: torch.Tensor,
filtered_input_data: Dataset,
indices_to_perturb: List[List[int]],
gene_list=None,
):
if gene_list is not None and cos_sims_data.shape[0] != len(gene_list):
logger.error(
f"len(cos_sims_data.shape[0]) != len(gene_list). \n \
{cos_sims_data.shape[0]=}.\n \
{len(gene_list)=}."
)
raise
if self.perturb_group is True:
if len(self.tokens_to_perturb) > 1:
perturbed_genes = tuple(self.tokens_to_perturb)
else:
perturbed_genes = self.tokens_to_perturb[0]
# if cell embeddings, can just append
# shape will be (batch size, 1)
cos_sims_data = torch.squeeze(cos_sims_data).tolist()
# handle case of single cell left
if not isinstance(cos_sims_data, list):
cos_sims_data = [cos_sims_data]
cos_sims_dict[(perturbed_genes, "cell_emb")] += cos_sims_data
else:
for i, cos in enumerate(cos_sims_data.tolist()):
cos_sims_dict[(gene_list[i], "cell_emb")].append(cos)
return cos_sims_dict |