feat: add usage to readme
Browse files
README.md
CHANGED
@@ -34,6 +34,61 @@ metrics:
|
|
34 |
This model is a fine-tuned checkpoint of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries.
|
35 |
## Task
|
36 |
The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: ''cs', 'en', 'de', 'es', 'fr', 'ru', 'tu', 'zh'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
## Dataset
|
38 |
Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set.
|
39 |
```
|
|
|
34 |
This model is a fine-tuned checkpoint of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the Multilingual large summarization dataset focused on Czech texts to produce multilingual summaries.
|
35 |
## Task
|
36 |
The model deals with a multi-sentence summary in eight different languages. With the idea of adding other foreign language documents, and by having a considerable amount of Czech documents, we aimed to improve model summarization in the Czech language. Supported languages: ''cs', 'en', 'de', 'es', 'fr', 'ru', 'tu', 'zh'
|
37 |
+
|
38 |
+
Assume that you are using the provided MultilingualSummarizer.ipynb file and included files from git repository.
|
39 |
+
|
40 |
+
```python
|
41 |
+
## Configuration of summarization pipeline
|
42 |
+
#
|
43 |
+
def summ_config():
|
44 |
+
cfg = OrderedDict([
|
45 |
+
|
46 |
+
## summarization model - checkpoint
|
47 |
+
# ctu-aic/m2m100-418M-multilingual-summarization-multilarge-cs
|
48 |
+
# ctu-aic/mt5-base-multilingual-summarization-multilarge-cs
|
49 |
+
# ctu-aic/mbart25-multilingual-summarization-multilarge-cs
|
50 |
+
("model_name", "ctu-aic/mbart25-multilingual-summarization-multilarge-cs"),
|
51 |
+
|
52 |
+
## language of summarization task
|
53 |
+
# language : string : cs, en, de, fr, es, tr, ru, zh
|
54 |
+
("language", "en"),
|
55 |
+
|
56 |
+
## generation method parameters in dictionary
|
57 |
+
#
|
58 |
+
("inference_cfg", OrderedDict([
|
59 |
+
("num_beams", 4),
|
60 |
+
("top_k", 40),
|
61 |
+
("top_p", 0.92),
|
62 |
+
("do_sample", True),
|
63 |
+
("temperature", 0.95),
|
64 |
+
("repetition_penalty", 1.23),
|
65 |
+
("no_repeat_ngram_size", None),
|
66 |
+
("early_stopping", True),
|
67 |
+
("max_length", 128),
|
68 |
+
("min_length", 10),
|
69 |
+
])),
|
70 |
+
#texts to summarize values = (list of strings, string, dataset)
|
71 |
+
("texts",
|
72 |
+
[
|
73 |
+
"english text1 to summarize",
|
74 |
+
"english text2 to summarize",
|
75 |
+
]
|
76 |
+
),
|
77 |
+
#OPTIONAL: Target summaries values = (list of strings, string, None)
|
78 |
+
('golds',
|
79 |
+
[
|
80 |
+
"target english text1",
|
81 |
+
"target english text2",
|
82 |
+
]),
|
83 |
+
#('golds', None),
|
84 |
+
])
|
85 |
+
return cfg
|
86 |
+
|
87 |
+
cfg = summ_config()
|
88 |
+
mSummarize = MultiSummarizer(**cfg)
|
89 |
+
ret = mSummarize(**cfg)
|
90 |
+
```
|
91 |
+
|
92 |
## Dataset
|
93 |
Multilingual large summarization dataset consists of 10 sub-datasets mainly based on news and daily mails. For the training, it was used the entire training set and 72% of the validation set.
|
94 |
```
|