Upload model to Hugging Face
Browse files- BC-from-behavior-cloning.zip +2 -2
- BC-from-behavior-cloning/data +17 -17
- BC-from-behavior-cloning/policy.optimizer.pth +1 -1
- BC-from-behavior-cloning/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
BC-from-behavior-cloning.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:829e55e505d6dab71065bed98e1f7fd463d3d8e3647621c8caac311e9aae9812
|
3 |
+
size 44072
|
BC-from-behavior-cloning/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -78,7 +78,7 @@
|
|
78 |
},
|
79 |
"_n_updates": 130,
|
80 |
"n_steps": 2048,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa28a2f12d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa28a2f1360>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa28a2f13f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa28a2f1480>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa28a2f1510>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa28a2f15a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa28a2f1630>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa28a2f16c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa28a2f1750>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa28a2f17e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa28a2f1870>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa28a2f1900>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa28a2de8c0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681848321440440409,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAADHwh0Ooh6+/AADIQgAAyEIGD+9BAADIQnuGHEJ0LOBBZL/nQQAAyEK1u3BD6m8pwAAAyEI5VcBCr3I/QgAAyEKnmT9CJRg2QqZ6ikLcMZVCYmKaQwW+Bj7qDsJCAADIQv4AkEIAAMhCAADIQgAAyEIAAMhCGqukQmrOhkNLXA9A9kyPQgAAyEIAAMhCClOhQvhtYUIeRG9CasyjQpVSpEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIogvqWwbCs8CUhpRSlIwBbJRLtowBdJRHQHMwsrZrYXh1fZQoaAZoCWgPQwhDqb2ItgtcwJSGlFKUaBVNLQFoFkdAc1JY8Md92HV9lChoBmgJaA9DCLvs15024bPAlIaUUpRoFUvgaBZHQHNbyhakhzN1fZQoaAZoCWgPQwitMeiE0OhbwJSGlFKUaBVNLQFoFkdAc1+rIHTqjnV9lChoBmgJaA9DCKuvrgpU4mHAlIaUUpRoFU0tAWgWR0BzYVuivgWKdX2UKGgGaAloD0MIYaqZtVDKs8CUhpRSlGgVS9xoFkdAc31KWcBltnV9lChoBmgJaA9DCCAkC5gMzbPAlIaUUpRoFUuxaBZHQHOFTMmnfl91fZQoaAZoCWgPQwhwlScQVvWzwJSGlFKUaBVNGQFoFkdAc5R606YE4nV9lChoBmgJaA9DCNhGPNnBorPAlIaUUpRoFUtzaBZHQHOVuYlY2bZ1fZQoaAZoCWgPQwiTxmgdVdFbwJSGlFKUaBVNLQFoFkdAc5387p3X7XV9lChoBmgJaA9DCCpVouwtfl7AlIaUUpRoFU0tAWgWR0BzxMefZmI1dX2UKGgGaAloD0MIL6TDQ9Sjs8CUhpRSlGgVSzBoFkdAc80+d9Ujs3V9lChoBmgJaA9DCG8p54uB6LPAlIaUUpRoFU0YAWgWR0BzzaL0jC53dX2UKGgGaAloD0MIvko+dhcdXMCUhpRSlGgVTS0BaBZHQHPSC3PRiPR1fZQoaAZoCWgPQwgJU5RL439XwJSGlFKUaBVNLQFoFkdAc9lQSi/O+3V9lChoBmgJaA9DCLItA84uqLPAlIaUUpRoFUtWaBZHQHPdYIWxhUl1fZQoaAZoCWgPQwj0TgXcx8CzwJSGlFKUaBVLeGgWR0Bz6e6+WWyDdX2UKGgGaAloD0MIDI/9LFrBs8CUhpRSlGgVS5BoFkdAc/SBDXvphXV9lChoBmgJaA9DCGixFMnXsrPAlIaUUpRoFUuVaBZHQHP5NvKlpGp1fZQoaAZoCWgPQwj5u3fUBPKzwJSGlFKUaBVNDQFoFkdAdAERbbDdg3V9lChoBmgJaA9DCJAUkWGZxbPAlIaUUpRoFUuXaBZHQHSk7Q5WBBl1fZQoaAZoCWgPQwgqpz0lo6GzwJSGlFKUaBVLaGgWR0B0retdRiw0dX2UKGgGaAloD0MIJNBgU9PNs8CUhpRSlGgVS9NoFkdAdL+fbsWweXV9lChoBmgJaA9DCESn591cmLPAlIaUUpRoFUtWaBZHQHTART0g8r91fZQoaAZoCWgPQwjVBbzM4LazwJSGlFKUaBVLpmgWR0B0wziR4hUzdX2UKGgGaAloD0MIR+NQv0eis8CUhpRSlGgVS3NoFkdAdNnzT4L1EnV9lChoBmgJaA9DCFBwsaLqsbPAlIaUUpRoFUufaBZHQHTmkqlP8AJ1fZQoaAZoCWgPQwi2ZcBZSpJJwJSGlFKUaBVNLQFoFkdAdOexHG0eEXV9lChoBmgJaA9DCBZsI55Ay7PAlIaUUpRoFUvdaBZHQHTxMBEKE391fZQoaAZoCWgPQwjqdYvAtJazwJSGlFKUaBVLY2gWR0B0/K8XenAJdX2UKGgGaAloD0MIqUvGMZIbWcCUhpRSlGgVTS0BaBZHQHUWIWxhUip1fZQoaAZoCWgPQwgOTkS/OsOzwJSGlFKUaBVL72gWR0B1HhS9/SYxdX2UKGgGaAloD0MIWAOUhhqcV8CUhpRSlGgVTS0BaBZHQHUheeSSvDB1fZQoaAZoCWgPQwiNKVjjVMOzwJSGlFKUaBVL7mgWR0B1K/iPyTY/dX2UKGgGaAloD0MI2ht8YbqXs8CUhpRSlGgVS1VoFkdAdTJvmHP/rHV9lChoBmgJaA9DCJrqyfzrr7PAlIaUUpRoFUuOaBZHQHVD4/qxC6Z1fZQoaAZoCWgPQwhu93KfpMizwJSGlFKUaBVL1WgWR0B1R1bRnezldX2UKGgGaAloD0MILgJjfVuLs8CUhpRSlGgVSz9oFkdAdVcS2Yv38HV9lChoBmgJaA9DCKrv/KLgu7PAlIaUUpRoFUvCaBZHQHVaqxcE/0N1fZQoaAZoCWgPQwiF6ubii8yzwJSGlFKUaBVL3mgWR0B1ZfDXOGCadX2UKGgGaAloD0MIqfsApDajTsCUhpRSlGgVTS0BaBZHQHWFNnXd0q91fZQoaAZoCWgPQwicUfNVLqSzwJSGlFKUaBVNFgFoFkdAdZSkhRqGlHV9lChoBmgJaA9DCAIR4srZn1PAlIaUUpRoFU0tAWgWR0B1lgcPvrnldX2UKGgGaAloD0MIwJZXrreXTcCUhpRSlGgVTS0BaBZHQHWkwbIcR151fZQoaAZoCWgPQwj+17lpM6pVwJSGlFKUaBVNLQFoFkdAdcVgFX7tRnV9lChoBmgJaA9DCNumeFxUEVLAlIaUUpRoFU0tAWgWR0B11HNqxkd4dX2UKGgGaAloD0MIDeAtkNjcs8CUhpRSlGgVTSgBaBZHQHXUrWZqmCR1fZQoaAZoCWgPQwgFwHgGHcuzwJSGlFKUaBVL82gWR0B12Gz1K5CodX2UKGgGaAloD0MIuMoTCHurs8CUhpRSlGgVS3poFkdAde2FhXr+pHV9lChoBmgJaA9DCL6fGi/d7lPAlIaUUpRoFU0tAWgWR0B1/Pollbu/dX2UKGgGaAloD0MIWFhwP0yNs8CUhpRSlGgVSzFoFkdAdgKOy3Td+HV9lChoBmgJaA9DCN1FmKJU27PAlIaUUpRoFU0RAWgWR0B2A/ko4MnadX2UKGgGaAloD0MInwCKkWGus8CUhpRSlGgVS65oFkdAdgSuqWC2+nV9lChoBmgJaA9DCDy/KEF/AFLAlIaUUpRoFU0tAWgWR0B2BXBnBciXdX2UKGgGaAloD0MIxxNBnJers8CUhpRSlGgVS0loFkdAdg7Y5T6zmnV9lChoBmgJaA9DCOp3YWvij7PAlIaUUpRoFUs0aBZHQHYPTB68g6l1fZQoaAZoCWgPQwivJHmu66+zwJSGlFKUaBVLS2gWR0B2Eb6KtPpIdX2UKGgGaAloD0MIsvFgi+WYs8CUhpRSlGgVS1RoFkdAdh9PuG9HtnV9lChoBmgJaA9DCFch5SdRobPAlIaUUpRoFUtnaBZHQHYinhbW3Bp1fZQoaAZoCWgPQwgYzF8hv6GzwJSGlFKUaBVLc2gWR0B2POi7CiyqdX2UKGgGaAloD0MIiEfi5eldUMCUhpRSlGgVTS0BaBZHQHZCV6AvtdB1fZQoaAZoCWgPQwhPWriswsdYwJSGlFKUaBVNLQFoFkdAdv48FpwjuHV9lChoBmgJaA9DCHEEqRQ7MWDAlIaUUpRoFU0tAWgWR0B3DsjgQ6IWdX2UKGgGaAloD0MIYoTwaOPnXMCUhpRSlGgVTS0BaBZHQHcuZqVQhwF1fZQoaAZoCWgPQwjswg/Op0tSwJSGlFKUaBVNLQFoFkdAdzRYekpI+XV9lChoBmgJaA9DCAslk1Ob6LPAlIaUUpRoFUvpaBZHQHc1tmthd+p1fZQoaAZoCWgPQwibOSS1CNmzwJSGlFKUaBVL2GgWR0B3QVVn27FsdX2UKGgGaAloD0MILQq7KC6ts8CUhpRSlGgVS11oFkdAd1dU8mrsB3V9lChoBmgJaA9DCNPYXgt6s1bAlIaUUpRoFU0tAWgWR0B3cMpVjqfOdX2UKGgGaAloD0MIm6kQjzTjs8CUhpRSlGgVTR4BaBZHQHdzzRlYlpp1fZQoaAZoCWgPQwieJjPeVt5dwJSGlFKUaBVNLQFoFkdAd3XySmqHXXV9lChoBmgJaA9DCBjrG5h41bPAlIaUUpRoFUvAaBZHQHd+SCSRr8B1fZQoaAZoCWgPQwhI3jmUUaSzwJSGlFKUaBVLQmgWR0B3g2OT7l7udX2UKGgGaAloD0MIbw9CQHbxs8CUhpRSlGgVTRABaBZHQHenY7V8Ti91fZQoaAZoCWgPQwgykGeXby9bwJSGlFKUaBVNLQFoFkdAd7GzJ6po9XV9lChoBmgJaA9DCAOTG0XWZFvAlIaUUpRoFU0tAWgWR0B3vfRG+bmVdX2UKGgGaAloD0MIonxBCwmgYcCUhpRSlGgVTS0BaBZHQHfD1RUFSsN1fZQoaAZoCWgPQwgUd7zJJ6mzwJSGlFKUaBVLWmgWR0B3xqsCDEm6dX2UKGgGaAloD0MIVhFuMk7Ms8CUhpRSlGgVS8JoFkdAd9FqAz544nV9lChoBmgJaA9DCHYaaalMprPAlIaUUpRoFUtsaBZHQHfZbn5i3G51fZQoaAZoCWgPQwg2yCQjy6WzwJSGlFKUaBVLaWgWR0B38H40uUUxdX2UKGgGaAloD0MIcR3jiovcW8CUhpRSlGgVTS0BaBZHQHgAwnhKlHl1fZQoaAZoCWgPQwh8SPje30lYwJSGlFKUaBVNLQFoFkdAeAnF23azvHV9lChoBmgJaA9DCBw/VBpx37PAlIaUUpRoFU0BAWgWR0B4DNvsJIDpdX2UKGgGaAloD0MIl3DoLTK0s8CUhpRSlGgVS55oFkdAeBWGff4yoHV9lChoBmgJaA9DCM0C7Q4xnrPAlIaUUpRoFUsdaBZHQHgc8Djin511fZQoaAZoCWgPQwg5J/bQ3pmzwJSGlFKUaBVLHGgWR0B4Ir6guh9LdX2UKGgGaAloD0MIaf8DrFXCs8CUhpRSlGgVS41oFkdAeCsY+B6KL3V9lChoBmgJaA9DCKIm+nyUylzAlIaUUpRoFU0tAWgWR0B4QEjrzGxVdX2UKGgGaAloD0MIR3cQO1O+VsCUhpRSlGgVTS0BaBZHQHhIJHEuQIV1fZQoaAZoCWgPQwgvwhTlLsqzwJSGlFKUaBVLxGgWR0B4Sh1DBuXNdX2UKGgGaAloD0MIBTOmYF3Ws8CUhpRSlGgVS+RoFkdAeFp/2Cdz4nV9lChoBmgJaA9DCPz+zYvTtLPAlIaUUpRoFUtYaBZHQHhdnCXQdCF1fZQoaAZoCWgPQwi/YDdsz5+zwJSGlFKUaBVLImgWR0B4Y+EHt4RmdX2UKGgGaAloD0MIh2u1h1G/s8CUhpRSlGgVS4hoFkdAeGSHXEqDsnV9lChoBmgJaA9DCIygMZOUwbPAlIaUUpRoFUuEaBZHQHhwx6rvLHN1fZQoaAZoCWgPQwi+MQQAR7qzwJSGlFKUaBVLcWgWR0B4dsCmuTzNdX2UKGgGaAloD0MIXkvIBz25W8CUhpRSlGgVTS0BaBZHQHh52WdEsrd1fZQoaAZoCWgPQwhjmBO0BZSzwJSGlFKUaBVLRGgWR0B4fXcEeQuFdX2UKGgGaAloD0MIzm+YaJBWW8CUhpRSlGgVTS0BaBZHQHiXz4593KV1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"_n_updates": 130,
|
80 |
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
BC-from-behavior-cloning/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b44e43d3888af5899d55b478bf1770d6aacb84b4f20e57f04e96fc370dd7d81f
|
3 |
size 18973
|
BC-from-behavior-cloning/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:affa3d3030bf6da6fccf2541fda20047c3b984c50ddfd5646b98b3f242eae4e5
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-from-behavior-cloning
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-from-behavior-cloning
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -4967.25 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff4e43f5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff4e43f52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff4e43f5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff4e43f53f0>", "_build": "<function ActorCriticPolicy._build at 0x7ff4e43f5480>", "forward": "<function ActorCriticPolicy.forward at 0x7ff4e43f5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff4e43f55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff4e43f5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff4e43f56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff4e43f5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff4e43f57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff4e43f5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff4e43e2c80>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681847579307834707, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAKl3hUNFWtC9AADIQi2BSULeyaRCQeQ6QgAAyEIAAMhCAADIQtvhlUKxOHZDeFICvwAAyEL8rTxCwj4hQvytPEIAAIJCAADIQgAAyELEA4hCFmiSQ5wRLz5X0qtCpvSJQm6RG0IAAMhCAADIQgAAyEIAAMhCBZ+5QqzZXkPoEAU+AADIQuxZIUJGSjhCdbCpQgAAyEIAAMhCQE4iQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwZDVrd6bg8CUhpRSlIwBbJRLy4wBdJRHQHKAEPczqKR1fZQoaAZoCWgPQwh6pSxDHBFlwJSGlFKUaBVNLQFoFkdAcoCSQYDT0HV9lChoBmgJaA9DCBvzOuKQemHAlIaUUpRoFU0tAWgWR0ByiwijcmBwdX2UKGgGaAloD0MIg9vawvNcW8CUhpRSlGgVTS0BaBZHQHKO7Xg9/z91fZQoaAZoCWgPQwgxs89jlB5bwJSGlFKUaBVLjmgWR0BykHkwN9YwdX2UKGgGaAloD0MI1/fhICFbgMCUhpRSlGgVSx1oFkdAcpHpVS4vvnV9lChoBmgJaA9DCBNgWP4cXoPAlIaUUpRoFUu1aBZHQHKUhWDHwPR1fZQoaAZoCWgPQwhpi2t8houAwJSGlFKUaBVLKWgWR0ByllNM495hdX2UKGgGaAloD0MIll0wuGbaZMCUhpRSlGgVTRgBaBZHQHKtP8hs67x1fZQoaAZoCWgPQwgwvf256FhhwJSGlFKUaBVL7WgWR0ByrtYU34sVdX2UKGgGaAloD0MI4lmCjACQYMCUhpRSlGgVS8toFkdAcrHVWS2Yv3V9lChoBmgJaA9DCHi5iO/EXYDAlIaUUpRoFUtnaBZHQHK9wKKHfuV1fZQoaAZoCWgPQwi1p+Sc2JNawJSGlFKUaBVNLQFoFkdAcr8ur6tT1nV9lChoBmgJaA9DCI7NjlS/t4DAlIaUUpRoFUs2aBZHQHLJpWFN+LF1fZQoaAZoCWgPQwiYw+47xsWAwJSGlFKUaBVLhmgWR0By5lDc/MW5dX2UKGgGaAloD0MIX8/XLJeIZcCUhpRSlGgVTScBaBZHQHLn/c8DB/J1fZQoaAZoCWgPQwj8/s2LE5hYwJSGlFKUaBVNLQFoFkdAcuyXlbNbDHV9lChoBmgJaA9DCAFp/wOsTljAlIaUUpRoFU0tAWgWR0By+pSDRMN+dX2UKGgGaAloD0MI91eP+/YogMCUhpRSlGgVSxBoFkdAcv3DTSb6QHV9lChoBmgJaA9DCInvxKyXaWLAlIaUUpRoFUvvaBZHQHMeExEfDDV1fZQoaAZoCWgPQwgHXi13Zi1YwJSGlFKUaBVNLQFoFkdAcyS5O8Cgb3V9lChoBmgJaA9DCL3+JD53j1fAlIaUUpRoFU0tAWgWR0BzJlJXhfjTdX2UKGgGaAloD0MIL204LO1bgMCUhpRSlGgVSx9oFkdAcyvFjd56dHV9lChoBmgJaA9DCD8cJER5IoLAlIaUUpRoFUv8aBZHQHMxDdgv1151fZQoaAZoCWgPQwjY9Qt2w8dXwJSGlFKUaBVLd2gWR0BzNYB91EE1dX2UKGgGaAloD0MIdF5jl8gygMCUhpRSlGgVSxVoFkdAczW2HLzPKXV9lChoBmgJaA9DCB1VTRD1OYDAlIaUUpRoFUsbaBZHQHM7hI4EOiF1fZQoaAZoCWgPQwjgZvFiYf5lwJSGlFKUaBVNLQFoFkdAc2LVtoBaLXV9lChoBmgJaA9DCNGuQspP/FnAlIaUUpRoFU0tAWgWR0Bzau94/u9fdX2UKGgGaAloD0MISDSBIpYrZMCUhpRSlGgVTS0BaBZHQHNyXXAdn011fZQoaAZoCWgPQwgOu+8YXqaAwJSGlFKUaBVLcmgWR0BzdZ3mmtQsdX2UKGgGaAloD0MI22tB740xY8CUhpRSlGgVTS0BaBZHQHN16IacZtN1fZQoaAZoCWgPQwiwcf27Pt9jwJSGlFKUaBVNLQFoFkdAc5bx+KCQLnV9lChoBmgJaA9DCE29bhEYc3/AlIaUUpRoFUshaBZHQHOcLZvkzXV1fZQoaAZoCWgPQwii725liWhgwJSGlFKUaBVNLQFoFkdAc54rWAf+0nV9lChoBmgJaA9DCNXt7CuPt2LAlIaUUpRoFU0tAWgWR0BzoIwL3K0VdX2UKGgGaAloD0MIgosVNZhaWsCUhpRSlGgVTS0BaBZHQHOg20zCUHJ1fZQoaAZoCWgPQwhtxmmISs+AwJSGlFKUaBVLi2gWR0B0IMyylenidX2UKGgGaAloD0MIPUm6ZrIugMCUhpRSlGgVSxloFkdAdCSH8jzI3nV9lChoBmgJaA9DCFQB9zyf5oPAlIaUUpRoFU0BAWgWR0B0NyAG0NSZdX2UKGgGaAloD0MI9MRztsCpf8CUhpRSlGgVSy9oFkdAdD/QEpy6tnV9lChoBmgJaA9DCMvz4O6s/FzAlIaUUpRoFU0tAWgWR0B0Q4V9F4LUdX2UKGgGaAloD0MINV66SQx8X8CUhpRSlGgVTS0BaBZHQHREDdHlOoJ1fZQoaAZoCWgPQwic+GpHcTJiwJSGlFKUaBVNLQFoFkdAdFfc/t6X0HV9lChoBmgJaA9DCB+94T5yJl/AlIaUUpRoFUvdaBZHQHRjQbVBlc11fZQoaAZoCWgPQwg1f0xr0+NawJSGlFKUaBVNLQFoFkdAdGoCkXUH6nV9lChoBmgJaA9DCLcLzXUa/FnAlIaUUpRoFU0tAWgWR0B0a8uUUwi8dX2UKGgGaAloD0MICvSJPMlmZMCUhpRSlGgVTS0BaBZHQHR6SxRl6JJ1fZQoaAZoCWgPQwjdzynIL/uAwJSGlFKUaBVLlGgWR0B0fCIbfgrIdX2UKGgGaAloD0MIqBq9GiCqY8CUhpRSlGgVTSkBaBZHQHSIL1M/QjV1fZQoaAZoCWgPQwheDrvvGJdgwJSGlFKUaBVL3mgWR0B0iJbpu/DcdX2UKGgGaAloD0MIB7e1hQcTgcCUhpRSlGgVS4loFkdAdJAMYdhiLHV9lChoBmgJaA9DCIqryr4rpWPAlIaUUpRoFU0tAWgWR0B0qUqhDgIhdX2UKGgGaAloD0MIgZTYtT1TYcCUhpRSlGgVTQcBaBZHQHS1uZ9d/rl1fZQoaAZoCWgPQwhKfO4E+wFhwJSGlFKUaBVNLQFoFkdAdLtViWmgrnV9lChoBmgJaA9DCAsIrYevHmLAlIaUUpRoFU0tAWgWR0B0wj2mHgxbdX2UKGgGaAloD0MIMSQnEzdBY8CUhpRSlGgVTRcBaBZHQHTYEnPVurJ1fZQoaAZoCWgPQwg9mBQfn4KAwJSGlFKUaBVLTWgWR0B05ECzTnaGdX2UKGgGaAloD0MIwtuDEJC8XsCUhpRSlGgVTS0BaBZHQHTloBRyfcx1fZQoaAZoCWgPQwhz275H/btYwJSGlFKUaBVNLQFoFkdAdOxz/6wdKnV9lChoBmgJaA9DCO8DkNrEt2HAlIaUUpRoFU0tAWgWR0B09AauOjqOdX2UKGgGaAloD0MI0qkrn4UlgMCUhpRSlGgVS0hoFkdAdQDdyT6i03V9lChoBmgJaA9DCH+D9uqjioHAlIaUUpRoFUvIaBZHQHUIK7qY7aJ1fZQoaAZoCWgPQwhd+pek8pWAwJSGlFKUaBVLY2gWR0B1GpdLQHAzdX2UKGgGaAloD0MIpTFaR1VYYsCUhpRSlGgVTS0BaBZHQHUch4IKMNt1fZQoaAZoCWgPQwj8/s2Lk6ZgwJSGlFKUaBVNLQFoFkdAdSJzMA3kxXV9lChoBmgJaA9DCA2LUdfa42LAlIaUUpRoFU0tAWgWR0B1OE+4b0e2dX2UKGgGaAloD0MITN2VXTATYcCUhpRSlGgVTS0BaBZHQHVMo95hScd1fZQoaAZoCWgPQwjUSEvl7SpbwJSGlFKUaBVNLQFoFkdAdU6UKzAvc3V9lChoBmgJaA9DCPZefNG+OIHAlIaUUpRoFUugaBZHQHVQT7655JN1fZQoaAZoCWgPQwjGpwAYz2diwJSGlFKUaBVNLQFoFkdAdVPoc7yQP3V9lChoBmgJaA9DCI/k8h9SyX/AlIaUUpRoFUsuaBZHQHVcsfNiYsx1fZQoaAZoCWgPQwjUYvAw7WBdwJSGlFKUaBVNLQFoFkdAdhnUKArhBXV9lChoBmgJaA9DCGSSkbOwImDAlIaUUpRoFU0tAWgWR0B2HHWQOnVHdX2UKGgGaAloD0MIFM5uLTNgg8CUhpRSlGgVTSoBaBZHQHYeBd2PkrB1fZQoaAZoCWgPQwi9/iQ+dzVgwJSGlFKUaBVNLQFoFkdAdioIomXw9nV9lChoBmgJaA9DCBMLfEW3813AlIaUUpRoFU0tAWgWR0B2REwAU+LWdX2UKGgGaAloD0MI7Sqk/KS9YcCUhpRSlGgVTS0BaBZHQHZF5TMqz7d1fZQoaAZoCWgPQwgMPzifug1gwJSGlFKUaBVNLQFoFkdAdkbuQIUrTnV9lChoBmgJaA9DCDhOCvMeEljAlIaUUpRoFU0tAWgWR0B2Us2MsH0LdX2UKGgGaAloD0MIRRK9jELTgcCUhpRSlGgVS5hoFkdAdmADU3GXHHV9lChoBmgJaA9DCMv1tpkKPV/AlIaUUpRoFU0tAWgWR0B2elLnLaEjdX2UKGgGaAloD0MI3nU25J+FW8CUhpRSlGgVTS0BaBZHQHZ+cyzolld1fZQoaAZoCWgPQwjCE3r9SZtfwJSGlFKUaBVNLQFoFkdAdot5yEL6UXV9lChoBmgJaA9DCCCySBOP64DAlIaUUpRoFUtRaBZHQHaMqoAGSp11fZQoaAZoCWgPQwhMNEjBU3VbwJSGlFKUaBVNLQFoFkdAdpjqCpWFOHV9lChoBmgJaA9DCB6HwfwVTF3AlIaUUpRoFU0tAWgWR0B2tXE4vN/wdX2UKGgGaAloD0MIWkV/aObjWsCUhpRSlGgVTS0BaBZHQHbI3fZVXFN1fZQoaAZoCWgPQwhCP1OvW19ewJSGlFKUaBVNLQFoFkdAdsq8BMi8nXV9lChoBmgJaA9DCClZTkLpTl/AlIaUUpRoFU0tAWgWR0B22AKqn3tbdX2UKGgGaAloD0MINKFJYkl9YMCUhpRSlGgVTS0BaBZHQHb02DlHSWt1fZQoaAZoCWgPQwh1OpD11LxawJSGlFKUaBVNLQFoFkdAdwk8Gs3hoHV9lChoBmgJaA9DCIV5jzPNAGLAlIaUUpRoFU0tAWgWR0B3CzdrO7g9dX2UKGgGaAloD0MIP1dbsb8VYMCUhpRSlGgVTS0BaBZHQHcS6YRdyDJ1fZQoaAZoCWgPQwikjo6rkexbwJSGlFKUaBVNLQFoFkdAdyL4mTkhinV9lChoBmgJaA9DCBR15h4S/mDAlIaUUpRoFU0tAWgWR0B3LmetjkMkdX2UKGgGaAloD0MIRFILJZMWYsCUhpRSlGgVTS0BaBZHQHcvUDEFW4p1fZQoaAZoCWgPQwjbvkf99aBbwJSGlFKUaBVNLQFoFkdAdzb69CeEqXV9lChoBmgJaA9DCLSqJR3lClfAlIaUUpRoFU0tAWgWR0B3R+fDk2gndX2UKGgGaAloD0MIMsaH2cssXcCUhpRSlGgVTS0BaBZHQHdW01IiC8R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa28a2f12d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa28a2f1360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa28a2f13f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa28a2f1480>", "_build": "<function ActorCriticPolicy._build at 0x7fa28a2f1510>", "forward": "<function ActorCriticPolicy.forward at 0x7fa28a2f15a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa28a2f1630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa28a2f16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa28a2f1750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa28a2f17e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa28a2f1870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa28a2f1900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa28a2de8c0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681848321440440409, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAADHwh0Ooh6+/AADIQgAAyEIGD+9BAADIQnuGHEJ0LOBBZL/nQQAAyEK1u3BD6m8pwAAAyEI5VcBCr3I/QgAAyEKnmT9CJRg2QqZ6ikLcMZVCYmKaQwW+Bj7qDsJCAADIQv4AkEIAAMhCAADIQgAAyEIAAMhCGqukQmrOhkNLXA9A9kyPQgAAyEIAAMhCClOhQvhtYUIeRG9CasyjQpVSpEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIogvqWwbCs8CUhpRSlIwBbJRLtowBdJRHQHMwsrZrYXh1fZQoaAZoCWgPQwhDqb2ItgtcwJSGlFKUaBVNLQFoFkdAc1JY8Md92HV9lChoBmgJaA9DCLvs15024bPAlIaUUpRoFUvgaBZHQHNbyhakhzN1fZQoaAZoCWgPQwitMeiE0OhbwJSGlFKUaBVNLQFoFkdAc1+rIHTqjnV9lChoBmgJaA9DCKuvrgpU4mHAlIaUUpRoFU0tAWgWR0BzYVuivgWKdX2UKGgGaAloD0MIYaqZtVDKs8CUhpRSlGgVS9xoFkdAc31KWcBltnV9lChoBmgJaA9DCCAkC5gMzbPAlIaUUpRoFUuxaBZHQHOFTMmnfl91fZQoaAZoCWgPQwhwlScQVvWzwJSGlFKUaBVNGQFoFkdAc5R606YE4nV9lChoBmgJaA9DCNhGPNnBorPAlIaUUpRoFUtzaBZHQHOVuYlY2bZ1fZQoaAZoCWgPQwiTxmgdVdFbwJSGlFKUaBVNLQFoFkdAc5387p3X7XV9lChoBmgJaA9DCCpVouwtfl7AlIaUUpRoFU0tAWgWR0BzxMefZmI1dX2UKGgGaAloD0MIL6TDQ9Sjs8CUhpRSlGgVSzBoFkdAc80+d9Ujs3V9lChoBmgJaA9DCG8p54uB6LPAlIaUUpRoFU0YAWgWR0BzzaL0jC53dX2UKGgGaAloD0MIvko+dhcdXMCUhpRSlGgVTS0BaBZHQHPSC3PRiPR1fZQoaAZoCWgPQwgJU5RL439XwJSGlFKUaBVNLQFoFkdAc9lQSi/O+3V9lChoBmgJaA9DCLItA84uqLPAlIaUUpRoFUtWaBZHQHPdYIWxhUl1fZQoaAZoCWgPQwj0TgXcx8CzwJSGlFKUaBVLeGgWR0Bz6e6+WWyDdX2UKGgGaAloD0MIDI/9LFrBs8CUhpRSlGgVS5BoFkdAc/SBDXvphXV9lChoBmgJaA9DCGixFMnXsrPAlIaUUpRoFUuVaBZHQHP5NvKlpGp1fZQoaAZoCWgPQwj5u3fUBPKzwJSGlFKUaBVNDQFoFkdAdAERbbDdg3V9lChoBmgJaA9DCJAUkWGZxbPAlIaUUpRoFUuXaBZHQHSk7Q5WBBl1fZQoaAZoCWgPQwgqpz0lo6GzwJSGlFKUaBVLaGgWR0B0retdRiw0dX2UKGgGaAloD0MIJNBgU9PNs8CUhpRSlGgVS9NoFkdAdL+fbsWweXV9lChoBmgJaA9DCESn591cmLPAlIaUUpRoFUtWaBZHQHTART0g8r91fZQoaAZoCWgPQwjVBbzM4LazwJSGlFKUaBVLpmgWR0B0wziR4hUzdX2UKGgGaAloD0MIR+NQv0eis8CUhpRSlGgVS3NoFkdAdNnzT4L1EnV9lChoBmgJaA9DCFBwsaLqsbPAlIaUUpRoFUufaBZHQHTmkqlP8AJ1fZQoaAZoCWgPQwi2ZcBZSpJJwJSGlFKUaBVNLQFoFkdAdOexHG0eEXV9lChoBmgJaA9DCBZsI55Ay7PAlIaUUpRoFUvdaBZHQHTxMBEKE391fZQoaAZoCWgPQwjqdYvAtJazwJSGlFKUaBVLY2gWR0B0/K8XenAJdX2UKGgGaAloD0MIqUvGMZIbWcCUhpRSlGgVTS0BaBZHQHUWIWxhUip1fZQoaAZoCWgPQwgOTkS/OsOzwJSGlFKUaBVL72gWR0B1HhS9/SYxdX2UKGgGaAloD0MIWAOUhhqcV8CUhpRSlGgVTS0BaBZHQHUheeSSvDB1fZQoaAZoCWgPQwiNKVjjVMOzwJSGlFKUaBVL7mgWR0B1K/iPyTY/dX2UKGgGaAloD0MI2ht8YbqXs8CUhpRSlGgVS1VoFkdAdTJvmHP/rHV9lChoBmgJaA9DCJrqyfzrr7PAlIaUUpRoFUuOaBZHQHVD4/qxC6Z1fZQoaAZoCWgPQwhu93KfpMizwJSGlFKUaBVL1WgWR0B1R1bRnezldX2UKGgGaAloD0MILgJjfVuLs8CUhpRSlGgVSz9oFkdAdVcS2Yv38HV9lChoBmgJaA9DCKrv/KLgu7PAlIaUUpRoFUvCaBZHQHVaqxcE/0N1fZQoaAZoCWgPQwiF6ubii8yzwJSGlFKUaBVL3mgWR0B1ZfDXOGCadX2UKGgGaAloD0MIqfsApDajTsCUhpRSlGgVTS0BaBZHQHWFNnXd0q91fZQoaAZoCWgPQwicUfNVLqSzwJSGlFKUaBVNFgFoFkdAdZSkhRqGlHV9lChoBmgJaA9DCAIR4srZn1PAlIaUUpRoFU0tAWgWR0B1lgcPvrnldX2UKGgGaAloD0MIwJZXrreXTcCUhpRSlGgVTS0BaBZHQHWkwbIcR151fZQoaAZoCWgPQwj+17lpM6pVwJSGlFKUaBVNLQFoFkdAdcVgFX7tRnV9lChoBmgJaA9DCNumeFxUEVLAlIaUUpRoFU0tAWgWR0B11HNqxkd4dX2UKGgGaAloD0MIDeAtkNjcs8CUhpRSlGgVTSgBaBZHQHXUrWZqmCR1fZQoaAZoCWgPQwgFwHgGHcuzwJSGlFKUaBVL82gWR0B12Gz1K5CodX2UKGgGaAloD0MIuMoTCHurs8CUhpRSlGgVS3poFkdAde2FhXr+pHV9lChoBmgJaA9DCL6fGi/d7lPAlIaUUpRoFU0tAWgWR0B1/Pollbu/dX2UKGgGaAloD0MIWFhwP0yNs8CUhpRSlGgVSzFoFkdAdgKOy3Td+HV9lChoBmgJaA9DCN1FmKJU27PAlIaUUpRoFU0RAWgWR0B2A/ko4MnadX2UKGgGaAloD0MInwCKkWGus8CUhpRSlGgVS65oFkdAdgSuqWC2+nV9lChoBmgJaA9DCDy/KEF/AFLAlIaUUpRoFU0tAWgWR0B2BXBnBciXdX2UKGgGaAloD0MIxxNBnJers8CUhpRSlGgVS0loFkdAdg7Y5T6zmnV9lChoBmgJaA9DCOp3YWvij7PAlIaUUpRoFUs0aBZHQHYPTB68g6l1fZQoaAZoCWgPQwivJHmu66+zwJSGlFKUaBVLS2gWR0B2Eb6KtPpIdX2UKGgGaAloD0MIsvFgi+WYs8CUhpRSlGgVS1RoFkdAdh9PuG9HtnV9lChoBmgJaA9DCFch5SdRobPAlIaUUpRoFUtnaBZHQHYinhbW3Bp1fZQoaAZoCWgPQwgYzF8hv6GzwJSGlFKUaBVLc2gWR0B2POi7CiyqdX2UKGgGaAloD0MIiEfi5eldUMCUhpRSlGgVTS0BaBZHQHZCV6AvtdB1fZQoaAZoCWgPQwhPWriswsdYwJSGlFKUaBVNLQFoFkdAdv48FpwjuHV9lChoBmgJaA9DCHEEqRQ7MWDAlIaUUpRoFU0tAWgWR0B3DsjgQ6IWdX2UKGgGaAloD0MIYoTwaOPnXMCUhpRSlGgVTS0BaBZHQHcuZqVQhwF1fZQoaAZoCWgPQwjswg/Op0tSwJSGlFKUaBVNLQFoFkdAdzRYekpI+XV9lChoBmgJaA9DCAslk1Ob6LPAlIaUUpRoFUvpaBZHQHc1tmthd+p1fZQoaAZoCWgPQwibOSS1CNmzwJSGlFKUaBVL2GgWR0B3QVVn27FsdX2UKGgGaAloD0MILQq7KC6ts8CUhpRSlGgVS11oFkdAd1dU8mrsB3V9lChoBmgJaA9DCNPYXgt6s1bAlIaUUpRoFU0tAWgWR0B3cMpVjqfOdX2UKGgGaAloD0MIm6kQjzTjs8CUhpRSlGgVTR4BaBZHQHdzzRlYlpp1fZQoaAZoCWgPQwieJjPeVt5dwJSGlFKUaBVNLQFoFkdAd3XySmqHXXV9lChoBmgJaA9DCBjrG5h41bPAlIaUUpRoFUvAaBZHQHd+SCSRr8B1fZQoaAZoCWgPQwhI3jmUUaSzwJSGlFKUaBVLQmgWR0B3g2OT7l7udX2UKGgGaAloD0MIbw9CQHbxs8CUhpRSlGgVTRABaBZHQHenY7V8Ti91fZQoaAZoCWgPQwgykGeXby9bwJSGlFKUaBVNLQFoFkdAd7GzJ6po9XV9lChoBmgJaA9DCAOTG0XWZFvAlIaUUpRoFU0tAWgWR0B3vfRG+bmVdX2UKGgGaAloD0MIonxBCwmgYcCUhpRSlGgVTS0BaBZHQHfD1RUFSsN1fZQoaAZoCWgPQwgUd7zJJ6mzwJSGlFKUaBVLWmgWR0B3xqsCDEm6dX2UKGgGaAloD0MIVhFuMk7Ms8CUhpRSlGgVS8JoFkdAd9FqAz544nV9lChoBmgJaA9DCHYaaalMprPAlIaUUpRoFUtsaBZHQHfZbn5i3G51fZQoaAZoCWgPQwg2yCQjy6WzwJSGlFKUaBVLaWgWR0B38H40uUUxdX2UKGgGaAloD0MIcR3jiovcW8CUhpRSlGgVTS0BaBZHQHgAwnhKlHl1fZQoaAZoCWgPQwh8SPje30lYwJSGlFKUaBVNLQFoFkdAeAnF23azvHV9lChoBmgJaA9DCBw/VBpx37PAlIaUUpRoFU0BAWgWR0B4DNvsJIDpdX2UKGgGaAloD0MIl3DoLTK0s8CUhpRSlGgVS55oFkdAeBWGff4yoHV9lChoBmgJaA9DCM0C7Q4xnrPAlIaUUpRoFUsdaBZHQHgc8Djin511fZQoaAZoCWgPQwg5J/bQ3pmzwJSGlFKUaBVLHGgWR0B4Ir6guh9LdX2UKGgGaAloD0MIaf8DrFXCs8CUhpRSlGgVS41oFkdAeCsY+B6KL3V9lChoBmgJaA9DCKIm+nyUylzAlIaUUpRoFU0tAWgWR0B4QEjrzGxVdX2UKGgGaAloD0MIR3cQO1O+VsCUhpRSlGgVTS0BaBZHQHhIJHEuQIV1fZQoaAZoCWgPQwgvwhTlLsqzwJSGlFKUaBVLxGgWR0B4Sh1DBuXNdX2UKGgGaAloD0MIBTOmYF3Ws8CUhpRSlGgVS+RoFkdAeFp/2Cdz4nV9lChoBmgJaA9DCPz+zYvTtLPAlIaUUpRoFUtYaBZHQHhdnCXQdCF1fZQoaAZoCWgPQwi/YDdsz5+zwJSGlFKUaBVLImgWR0B4Y+EHt4RmdX2UKGgGaAloD0MIh2u1h1G/s8CUhpRSlGgVS4hoFkdAeGSHXEqDsnV9lChoBmgJaA9DCIygMZOUwbPAlIaUUpRoFUuEaBZHQHhwx6rvLHN1fZQoaAZoCWgPQwi+MQQAR7qzwJSGlFKUaBVLcWgWR0B4dsCmuTzNdX2UKGgGaAloD0MIXkvIBz25W8CUhpRSlGgVTS0BaBZHQHh52WdEsrd1fZQoaAZoCWgPQwhjmBO0BZSzwJSGlFKUaBVLRGgWR0B4fXcEeQuFdX2UKGgGaAloD0MIzm+YaJBWW8CUhpRSlGgVTS0BaBZHQHiXz4593KV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -4967.250626935967, "std_reward": 9.094947017729282e-13, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T13:12:12.116383"}
|