Upload model to Hugging Face
Browse files- BC-from-behavior-cloning.zip +2 -2
- BC-from-behavior-cloning/data +16 -16
- BC-from-behavior-cloning/policy.optimizer.pth +1 -1
- BC-from-behavior-cloning/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
BC-from-behavior-cloning.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd8976fc0cd501d518d7e3c00f6b394fcf01e16716a6e416ff9f4f55537faa15
|
3 |
+
size 44015
|
BC-from-behavior-cloning/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96f2f12d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96f2f1360>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96f2f13f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96f2f1480>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa96f2f1510>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa96f2f15a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa96f2f1630>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96f2f16c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa96f2f1750>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96f2f17e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96f2f1870>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96f2f1900>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa96f51f780>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681854602905755734,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAO8+RkOK1RE8JmCMQgAAyEIAAMhCJGpmQtNUp0IAAMhCAADIQiXdnEJQ9RhDNol4P8t5LUIAAMhCAADIQgAAyEIAAMhC5LJZQqZux0G0lcpByENTQxBDFL8IBJVCTqujQgAAyEI6yaNCK/SUQgAAyEIAAMhC85+zQgkzakMukJW+AADIQgAAyEIAAMhCZOurQj1SOkK8aMZCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqM0gMCUhpRSlIwBbJRLM4wBdJRHQHbgjK9wm3R1fZQoaAZoCWgPQwiBQdKnVQQ6wJSGlFKUaBVLYmgWR0B24Ndt2s7udX2UKGgGaAloD0MIkiIyrOJFMMCUhpRSlGgVS2FoFkdAduVINEw353V9lChoBmgJaA9DCL4yb9WViIDAlIaUUpRoFUtFaBZHQHbo9sJpnHx1fZQoaAZoCWgPQwizlgLS/nc4wJSGlFKUaBVLcmgWR0B26iTr3TNMdX2UKGgGaAloD0MIG2SSkbMAMsCUhpRSlGgVS0xoFkdAdupw/gR9PXV9lChoBmgJaA9DCInPnWCfNoDAlIaUUpRoFUs0aBZHQHbr8Qyylep1fZQoaAZoCWgPQwgO2NXkqcB/wJSGlFKUaBVLGWgWR0B27EvHtF8YdX2UKGgGaAloD0MIaOp1i8AAgMCUhpRSlGgVSxZoFkdAdu8gvUSZjXV9lChoBmgJaA9DCNKnVfRHaoDAlIaUUpRoFUs/aBZHQHbx8cU/OdJ1fZQoaAZoCWgPQwhJopdRDD6AwJSGlFKUaBVLNWgWR0B28m6shgVodX2UKGgGaAloD0MIFMstrYbIOsCUhpRSlGgVS2doFkdAdvX4VARkE3V9lChoBmgJaA9DCABxV68ivzXAlIaUUpRoFUtUaBZHQHb4TGxUvPF1fZQoaAZoCWgPQwgUXRd+0G2AwJSGlFKUaBVLPWgWR0B2+SyOaOPvdX2UKGgGaAloD0MIFhdH5YZXgMCUhpRSlGgVSzpoFkdAdv05zo2XLXV9lChoBmgJaA9DCHcSEf5FxDjAlIaUUpRoFUtxaBZHQHb/KcVgx8F1fZQoaAZoCWgPQwiBzM6id7I7wJSGlFKUaBVLbGgWR0B3B92KVII4dX2UKGgGaAloD0MIj+TyH9LbN8CUhpRSlGgVS3NoFkdAdwiZDzAerHV9lChoBmgJaA9DCJ7vp8aLZYDAlIaUUpRoFUs/aBZHQHcIoaDPGAF1fZQoaAZoCWgPQwhTlba4xuB/wJSGlFKUaBVLFWgWR0B3CuSNfgJkdX2UKGgGaAloD0MIorQ3+MKQO8CUhpRSlGgVS2loFkdAdw0keIVM23V9lChoBmgJaA9DCIwUysIXL4DAlIaUUpRoFUs2aBZHQHcR9cSoOx11fZQoaAZoCWgPQwjeHoSAfGEvwJSGlFKUaBVLUWgWR0B3FsVuaWondX2UKGgGaAloD0MINGjon+ACJMCUhpRSlGgVS01oFkdAdxo0j1PFenV9lChoBmgJaA9DCC4dc56RPIDAlIaUUpRoFUs2aBZHQHcgfek56t11fZQoaAZoCWgPQwiBzqRN1Vk1wJSGlFKUaBVLW2gWR0B3IsIWxhUjdX2UKGgGaAloD0MIaOkKthHPOMCUhpRSlGgVS3VoFkdAdyMcxCY1HnV9lChoBmgJaA9DCFW+ZySCR4DAlIaUUpRoFUs3aBZHQHcslVDKHO91fZQoaAZoCWgPQwhQbXAi+i05wJSGlFKUaBVLaWgWR0B3L0h8pkPMdX2UKGgGaAloD0MICM2ue4tbgMCUhpRSlGgVSztoFkdAdzBaBqbjLnV9lChoBmgJaA9DCOCcEaV9VoDAlIaUUpRoFUs7aBZHQHc+bVz6rNp1fZQoaAZoCWgPQwgNbmsLz+8+wJSGlFKUaBVLemgWR0B3QRJsfq5cdX2UKGgGaAloD0MImyFVFK/yNMCUhpRSlGgVS1xoFkdAd0TB5HEuQXV9lChoBmgJaA9DCLSwpx3+OjHAlIaUUpRoFUtOaBZHQHdRpdB0ITp1fZQoaAZoCWgPQwj3PlWFRmyAwJSGlFKUaBVLQGgWR0B3U/LcKw6idX2UKGgGaAloD0MI7YLBNffDgMCUhpRSlGgVS6loFkdAd1oHpbD/EXV9lChoBmgJaA9DCOV620yFZDnAlIaUUpRoFUttaBZHQHdbWEwnH/91fZQoaAZoCWgPQwgnamlu5UGAwJSGlFKUaBVLOWgWR0B3YOdUbT+edX2UKGgGaAloD0MIGR9mL3s9gMCUhpRSlGgVSzRoFkdAd2aKbrkbP3V9lChoBmgJaA9DCFt7n6pCKzXAlIaUUpRoFUtkaBZHQHdu8uzyBkJ1fZQoaAZoCWgPQwiKy/EKRMc5wJSGlFKUaBVLYGgWR0B3dOC/XXiBdX2UKGgGaAloD0MI8yGoGp37gMCUhpRSlGgVS6poFkdAd3bFnIyTIXV9lChoBmgJaA9DCALU1LK1xjbAlIaUUpRoFUttaBZHQHd9w8wHqu91fZQoaAZoCWgPQwisrG2KhxOAwJSGlFKUaBVLMGgWR0B3h2yOaOPvdX2UKGgGaAloD0MI8mCL3T5zPMCUhpRSlGgVS3VoFkdAd4f1WsA/93V9lChoBmgJaA9DCOtU+Z6RNDzAlIaUUpRoFUteaBZHQHeKGPtD2J11fZQoaAZoCWgPQwhwsaIG09g3wJSGlFKUaBVLamgWR0B3in8fms/6dX2UKGgGaAloD0MIE7ngDB5KgMCUhpRSlGgVSzdoFkdAd5Ho7muDBnV9lChoBmgJaA9DCBzPZ0DdG4DAlIaUUpRoFUsvaBZHQHeTJ2t+1Bt1fZQoaAZoCWgPQwiuvOR/0kaAwJSGlFKUaBVLOGgWR0B3k8dJaq0ddX2UKGgGaAloD0MIescpOpJhf8CUhpRSlGgVSxZoFkdAd5WDaoMrmXV9lChoBmgJaA9DCM1zRL5LeTnAlIaUUpRoFUtoaBZHQHeZb0aqCH11fZQoaAZoCWgPQwjXw5eJIjgwwJSGlFKUaBVLVWgWR0B3oRgeA/cGdX2UKGgGaAloD0MIvhb03rgvgMCUhpRSlGgVSzpoFkdAd6MFuvUz9HV9lChoBmgJaA9DCN+pgHuejzvAlIaUUpRoFUtsaBZHQHem0fT1CgN1fZQoaAZoCWgPQwh0CvKzkW86wJSGlFKUaBVLbWgWR0B3qMona37UdX2UKGgGaAloD0MIyZHOwOgvgMCUhpRSlGgVSzNoFkdAd7CqwhW5pnV9lChoBmgJaA9DCEXY8PRK9THAlIaUUpRoFUtbaBZHQHeywyuZCv51fZQoaAZoCWgPQwi22O2zyiA2wJSGlFKUaBVLcmgWR0B3ul9F4LThdX2UKGgGaAloD0MIgGPPnitNgMCUhpRSlGgVSzdoFkdAd7wSSeRPoHV9lChoBmgJaA9DCHlZEwt8bTbAlIaUUpRoFUt0aBZHQHfA0bcXWOJ1fZQoaAZoCWgPQwj7dac7T8wtwJSGlFKUaBVLTWgWR0B3xAAIY3vQdX2UKGgGaAloD0MITkcAN4ubPcCUhpRSlGgVS2RoFkdAd8yRsuWa+nV9lChoBmgJaA9DCET3rGv0aYDAlIaUUpRoFUs8aBZHQHfMwEEC/491fZQoaAZoCWgPQwjW5v9VR3o1wJSGlFKUaBVLZ2gWR0B3zhcry1/ldX2UKGgGaAloD0MIngd3Z+2sf8CUhpRSlGgVSxZoFkdAd88vHLida3V9lChoBmgJaA9DCOmZXmIs6zbAlIaUUpRoFUtvaBZHQHfRIlD4QBh1fZQoaAZoCWgPQwi5bHTOb1eAwJSGlFKUaBVLOmgWR0B30x2W6bvxdX2UKGgGaAloD0MIWaX0TM9hgMCUhpRSlGgVS0FoFkdAd9cSJTER8XV9lChoBmgJaA9DCD4mUpoNbYDAlIaUUpRoFUtBaBZHQHfaQQL/jsF1fZQoaAZoCWgPQwgC8iVUcFA7wJSGlFKUaBVLdWgWR0B33YA80UGndX2UKGgGaAloD0MIM6MfDcdZgMCUhpRSlGgVSztoFkdAd9//zreImHV9lChoBmgJaA9DCCNrDaX2bjfAlIaUUpRoFUtcaBZHQHfgWfK6nR91fZQoaAZoCWgPQwglsaTcnWmAwJSGlFKUaBVLOmgWR0B35jjuKGcndX2UKGgGaAloD0MINLqD2JmGNsCUhpRSlGgVS1hoFkdAd+eVyWAwwnV9lChoBmgJaA9DCNC1L6A3PoDAlIaUUpRoFUs5aBZHQHfp9VJcxCZ1fZQoaAZoCWgPQwhKtrqckiCAwJSGlFKUaBVLM2gWR0B37+Q7tAs1dX2UKGgGaAloD0MIHZJaKJmcJMCUhpRSlGgVS0ZoFkdAd/G5xzaK13V9lChoBmgJaA9DCEm6ZvLNMjzAlIaUUpRoFUttaBZHQHfxuy7f51x1fZQoaAZoCWgPQwj9bOS6iWSAwJSGlFKUaBVLQGgWR0B3+y1RceKbdX2UKGgGaAloD0MIIJvkR7xAgMCUhpRSlGgVSzVoFkdAd/u1qFh5PnV9lChoBmgJaA9DCGvT2F4LmjfAlIaUUpRoFUttaBZHQHf9B3aBZp11fZQoaAZoCWgPQwgzbmqgOVuAwJSGlFKUaBVLPGgWR0B3/TQa72+PdX2UKGgGaAloD0MIuwopPylZgMCUhpRSlGgVSz1oFkdAeAdWWyC4BnV9lChoBmgJaA9DCAYP0755SoDAlIaUUpRoFUs3aBZHQHgHdmL9/Bp1fZQoaAZoCWgPQwhKYkm5WwiAwJSGlFKUaBVLGmgWR0B4C21UlzEKdX2UKGgGaAloD0MInznrU46/QMCUhpRSlGgVS2loFkdAeA1PGhmGunV9lChoBmgJaA9DCBo09E9wuTfAlIaUUpRoFUtxaBZHQHgPmsvIwM91fZQoaAZoCWgPQwinrRHBuP1/wJSGlFKUaBVLF2gWR0B4E0wrUb1idX2UKGgGaAloD0MI22rWGd/nOsCUhpRSlGgVS2poFkdAeBg/tY0VJ3V9lChoBmgJaA9DCOM0RBX+eD7AlIaUUpRoFUtuaBZHQHgeXBpHqeN1fZQoaAZoCWgPQwisHcU56oQ5wJSGlFKUaBVLbmgWR0B4IfCaZx7zdX2UKGgGaAloD0MIxLEubqNxNcCUhpRSlGgVS2ZoFkdAeCdEpy6tknV9lChoBmgJaA9DCEaaeAc4KIDAlIaUUpRoFUsxaBZHQHgntvXK8th1fZQoaAZoCWgPQwhf1O5XAbZAwJSGlFKUaBVLZWgWR0B4K7jS5RTCdX2UKGgGaAloD0MIUDqRYOoPgMCUhpRSlGgVSzBoFkdAeDCm1IAfdXV9lChoBmgJaA9DCE890uC2ijjAlIaUUpRoFUtxaBZHQHg3rteD3/R1fZQoaAZoCWgPQwhSfHxCdn45wJSGlFKUaBVLZ2gWR0B4PK3Ytg8bdX2UKGgGaAloD0MIXyUfu+tLgMCUhpRSlGgVSzxoFkdAeD0byYoiLXV9lChoBmgJaA9DCI81I4PcrTTAlIaUUpRoFUtWaBZHQHg9crRSgoR1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-from-behavior-cloning/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bddbaa73b2c40bcee16fa4602c6fce4ec98cbee066bef835c3b61df3d572d73e
|
3 |
size 18973
|
BC-from-behavior-cloning/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e49697b5d4a2dbd8b0c315a3171e85ca1afbed86093a444bce1a84ad7be546d
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-from-behavior-cloning
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-from-behavior-cloning
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -522.04 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdab54f12d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdab54f1360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdab54f13f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdab54f1480>", "_build": "<function ActorCriticPolicy._build at 0x7fdab54f1510>", "forward": "<function ActorCriticPolicy.forward at 0x7fdab54f15a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdab54f1630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdab54f16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdab54f1750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdab54f17e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdab54f1870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdab54f1900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdab54de900>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681854060174160935, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAHk9pEObd5M/rWmjQi+IkkIAAMhCAADIQjDZr0JBTlhCdQRjQlgJokLGWotDXq1+PQAAyEIaMxVCyhlIQgohu0IAAMhCtA6bQvbxC0IAAMhCRImSQ1sJ9z/L7nRC0dSOQgAAyEIVV7ZC9MdiQgAAyELZTQ5CJ2oNQuGYjkOTO5G+AADIQokC+0GNcBBCkNeJQgAAyEIAAMhCb56AQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeSRenvLMs8CUhpRSlIwBbJRL3owBdJRHQHF0ZylvZRN1fZQoaAZoCWgPQwiiemtgy42zwJSGlFKUaBVLOWgWR0BxeGW0JF9bdX2UKGgGaAloD0MIfO4E+4uXs8CUhpRSlGgVSzBoFkdAcXn1schkiHV9lChoBmgJaA9DCPje36AZx7PAlIaUUpRoFUu5aBZHQHGTvq5byH51fZQoaAZoCWgPQwgGf7+YIY2zwJSGlFKUaBVLL2gWR0Bxm0k/r0J4dX2UKGgGaAloD0MIT1sjgvE0YcCUhpRSlGgVTS0BaBZHQHGh6N+9all1fZQoaAZoCWgPQwiCkZc1sXZiwJSGlFKUaBVNLQFoFkdAcaccHWz4UXV9lChoBmgJaA9DCHnm5bB7bWLAlIaUUpRoFU0tAWgWR0BxqIk6cRUWdX2UKGgGaAloD0MI9DP1utVzs8CUhpRSlGgVSyVoFkdAca4ZHuqm0nV9lChoBmgJaA9DCB1VTRDdcLPAlIaUUpRoFUsraBZHQHG0CO7xusN1fZQoaAZoCWgPQwgceLXcmb1iwJSGlFKUaBVNLQFoFkdAcjeKDTSb6XV9lChoBmgJaA9DCI9yMJuAhWLAlIaUUpRoFU0tAWgWR0ByPOyKNyYHdX2UKGgGaAloD0MIK2nFNxRSYMCUhpRSlGgVTS0BaBZHQHJDWCyyD7J1fZQoaAZoCWgPQwgqkUQvI1phwJSGlFKUaBVNLQFoFkdAck8lyimEXnV9lChoBmgJaA9DCMXHJ2S/x7PAlIaUUpRoFUvXaBZHQHJcuF6Avtd1fZQoaAZoCWgPQwj/A6xVu6VdwJSGlFKUaBVNLQFoFkdAcmQGy5Zr6HV9lChoBmgJaA9DCESGVbxphrPAlIaUUpRoFUspaBZHQHJquV1Oj7B1fZQoaAZoCWgPQwjBxvXv+gxhwJSGlFKUaBVNLQFoFkdAcnB8ox59mnV9lChoBmgJaA9DCEX0a+unwGTAlIaUUpRoFU0tAWgWR0ByfXdBSk0rdX2UKGgGaAloD0MIw2fr4OCZY8CUhpRSlGgVTS0BaBZHQHKIBwhnrY51fZQoaAZoCWgPQwjVzFoKiNyzwJSGlFKUaBVLuWgWR0ByiXcXWOIZdX2UKGgGaAloD0MIdelfksr+XMCUhpRSlGgVTS0BaBZHQHKRKzRhMJx1fZQoaAZoCWgPQwgqx2Rx67SzwJSGlFKUaBVLf2gWR0Byl5gYxcmjdX2UKGgGaAloD0MIJeoFn3KAs8CUhpRSlGgVS4VoFkdAcqBYmb9ZR3V9lChoBmgJaA9DCOgxyjMvWVnAlIaUUpRoFU0tAWgWR0ByofSy+pOvdX2UKGgGaAloD0MI6+Bgb2KDWcCUhpRSlGgVTS0BaBZHQHKsDkhib2F1fZQoaAZoCWgPQwiqYFRSx+OzwJSGlFKUaBVL1mgWR0BysBj8UEgXdX2UKGgGaAloD0MIWTLH8q68YsCUhpRSlGgVTS0BaBZHQHLLoznA6+51fZQoaAZoCWgPQwixTwDFyEpLwJSGlFKUaBVNLQFoFkdAcs4tQ9A5aXV9lChoBmgJaA9DCBwIyQKmbmHAlIaUUpRoFU0tAWgWR0By3BCE6DGtdX2UKGgGaAloD0MISgwCK4e7XsCUhpRSlGgVTS0BaBZHQHLe2OEM9bJ1fZQoaAZoCWgPQwiUFi6rMM1gwJSGlFKUaBVNLQFoFkdAcvXL7oB7u3V9lChoBmgJaA9DCNY6cTleK1jAlIaUUpRoFU0tAWgWR0By9xwIdELIdX2UKGgGaAloD0MImngHeFLOs8CUhpRSlGgVTQIBaBZHQHL8GaH9FWp1fZQoaAZoCWgPQwjbEyS2N7WzwJSGlFKUaBVLe2gWR0BzAgWweNkwdX2UKGgGaAloD0MIcF8HzhmMXsCUhpRSlGgVTS0BaBZHQHMCrd30PH11fZQoaAZoCWgPQwiAKJgxfcSzwJSGlFKUaBVL02gWR0BzDdCOWBz4dX2UKGgGaAloD0MIeHqlLHu2s8CUhpRSlGgVS9ZoFkdAcxaQe3hGY3V9lChoBmgJaA9DCAVNS6wQ2LPAlIaUUpRoFUv2aBZHQHMjhBJI1+B1fZQoaAZoCWgPQwhiLT4FeKuzwJSGlFKUaBVLlmgWR0BzK7vjOs1bdX2UKGgGaAloD0MIKULqdvZfT8CUhpRSlGgVTS0BaBZHQHMsKFuejEh1fZQoaAZoCWgPQwjM0eP36p6zwJSGlFKUaBVLmWgWR0BzPC0+kgwHdX2UKGgGaAloD0MIYtaLoRyxYcCUhpRSlGgVTS0BaBZHQHM87Gm1pkB1fZQoaAZoCWgPQwiWIvlKqL2zwJSGlFKUaBVLimgWR0BzRMBDG96DdX2UKGgGaAloD0MIGQRWDr3ps8CUhpRSlGgVS6JoFkdAc0hgNPP9k3V9lChoBmgJaA9DCKipZWu5p7PAlIaUUpRoFUvWaBZHQHPuvCIk7fZ1fZQoaAZoCWgPQwge/MQB9PxdwJSGlFKUaBVNLQFoFkdAc/K4YrJ8v3V9lChoBmgJaA9DCNrFNNM9amXAlIaUUpRoFU0tAWgWR0Bz8wmhM8HOdX2UKGgGaAloD0MIpb3BFyavQMCUhpRSlGgVTS0BaBZHQHP6PatcOb11fZQoaAZoCWgPQwjshJfgVK5lwJSGlFKUaBVNLQFoFkdAdCIpGFzuGHV9lChoBmgJaA9DCBYx7DCmoWHAlIaUUpRoFU0tAWgWR0B0Jl/y5I6KdX2UKGgGaAloD0MIX5fhP93TVcCUhpRSlGgVTS0BaBZHQHQmurdWQwN1fZQoaAZoCWgPQwjY9Qt2w3VbwJSGlFKUaBVNLQFoFkdAdC1bj94u9XV9lChoBmgJaA9DCM2VQbXB+FfAlIaUUpRoFU0tAWgWR0B0VNMi8nNQdX2UKGgGaAloD0MI1NUdi20QX8CUhpRSlGgVTS0BaBZHQHRY296C17Z1fZQoaAZoCWgPQwjFyf0ORT9hwJSGlFKUaBVNLQFoFkdAdFkRlHz6J3V9lChoBmgJaA9DCO4JEttdsGDAlIaUUpRoFU0tAWgWR0B0XxyMkyDadX2UKGgGaAloD0MImPbN/dWVWMCUhpRSlGgVTS0BaBZHQHSBkLc9GI91fZQoaAZoCWgPQwg4gem07o9mwJSGlFKUaBVNLQFoFkdAdISkFwDNhXV9lChoBmgJaA9DCErtRbQdfV7AlIaUUpRoFU0tAWgWR0B0hOqCHymRdX2UKGgGaAloD0MI2bCmsqiFYsCUhpRSlGgVTS0BaBZHQHSK2JJoTPB1fZQoaAZoCWgPQwgvMCsU6TNWwJSGlFKUaBVNLQFoFkdAdLFJC0F8onV9lChoBmgJaA9DCEc9RKO71mHAlIaUUpRoFU0tAWgWR0B0tOjL0SRKdX2UKGgGaAloD0MI5SuBlNjtY8CUhpRSlGgVTS0BaBZHQHS1iiAUcn51fZQoaAZoCWgPQwiTqBd8mglmwJSGlFKUaBVNLQFoFkdAdLssa86FNHV9lChoBmgJaA9DCI5bzM8NAmLAlIaUUpRoFU0tAWgWR0B04WfpUxVRdX2UKGgGaAloD0MIMLyS5Dn/ZMCUhpRSlGgVTS0BaBZHQHTkM0P6KtR1fZQoaAZoCWgPQwj8VuvE5RliwJSGlFKUaBVNLQFoFkdAdOR9gF5fMXV9lChoBmgJaA9DCOfgmdCkWmXAlIaUUpRoFU0tAWgWR0B07X+kxh2GdX2UKGgGaAloD0MIlkG1wYmzYsCUhpRSlGgVTS0BaBZHQHUZ61Cw8nx1fZQoaAZoCWgPQwiZoIZvYZ1fwJSGlFKUaBVNLQFoFkdAdR1YRujynXV9lChoBmgJaA9DCE8jLZW3f1zAlIaUUpRoFU0tAWgWR0B1HcBHTZxrdX2UKGgGaAloD0MI/OQoQBT/UMCUhpRSlGgVTS0BaBZHQHUmyEYfnwJ1fZQoaAZoCWgPQwhIUPwYc4NgwJSGlFKUaBVNLQFoFkdAddoeNT987nV9lChoBmgJaA9DCCPdzynI2F/AlIaUUpRoFU0tAWgWR0B13w7QswtbdX2UKGgGaAloD0MI2BAcl/EOYMCUhpRSlGgVTS0BaBZHQHXfd56dDpl1fZQoaAZoCWgPQwg4hgDg2AJZwJSGlFKUaBVNLQFoFkdAdej00WM0g3V9lChoBmgJaA9DCOCFrdnKuz7AlIaUUpRoFU0tAWgWR0B2ESRGMGX5dX2UKGgGaAloD0MIkXwlkBI/YMCUhpRSlGgVTS0BaBZHQHYVJGBnSOR1fZQoaAZoCWgPQwg66ui4Gj9ewJSGlFKUaBVNLQFoFkdAdhV6vq1PWXV9lChoBmgJaA9DCBlwlpLl9EvAlIaUUpRoFU0tAWgWR0B2HwDU3GXHdX2UKGgGaAloD0MIkE3yI36sWMCUhpRSlGgVTS0BaBZHQHY+kLx7RfF1fZQoaAZoCWgPQwhKuJBHcIRcwJSGlFKUaBVNLQFoFkdAdkDfKp1ifHV9lChoBmgJaA9DCMb83NCUmVrAlIaUUpRoFU0tAWgWR0B2QSmMwUQDdX2UKGgGaAloD0MIwhiRKLTUIMCUhpRSlGgVTS0BaBZHQHZFkxIre691fZQoaAZoCWgPQwjt1FxuBMyzwJSGlFKUaBVNDAFoFkdAdl2seGO+7HV9lChoBmgJaA9DCAOYMnBA5VbAlIaUUpRoFU0tAWgWR0B2Xr8yeqaPdX2UKGgGaAloD0MI2T9PAwZgXsCUhpRSlGgVTS0BaBZHQHZhemFajet1fZQoaAZoCWgPQwjkgcgizSFgwJSGlFKUaBVNLQFoFkdAdmZwPAfuC3V9lChoBmgJaA9DCDAsf74tXljAlIaUUpRoFU0tAWgWR0B2gMo0ALiNdX2UKGgGaAloD0MIeO3ShsNfW8CUhpRSlGgVTS0BaBZHQHaCE9+w1SB1fZQoaAZoCWgPQwizRGeZxchhwJSGlFKUaBVNLQFoFkdAdoYdv863iXV9lChoBmgJaA9DCOjbgqW6QPq/lIaUUpRoFU0tAWgWR0B2jc33pOerdX2UKGgGaAloD0MIOZhNgGFBOcCUhpRSlGgVTS0BaBZHQHanprYXfqJ1fZQoaAZoCWgPQwgceSCySO5iwJSGlFKUaBVNLQFoFkdAdqjDsMRYinV9lChoBmgJaA9DCFt7n6pCM2LAlIaUUpRoFU0tAWgWR0B2q2PQv6CUdX2UKGgGaAloD0MIA5MbRdagWsCUhpRSlGgVTS0BaBZHQHaxpXZGrjp1fZQoaAZoCWgPQwjs+3CQEBRpwJSGlFKUaBVNLQFoFkdAds6u9vjwQXV9lChoBmgJaA9DCC1eLAyRNzHAlIaUUpRoFU0tAWgWR0B2z71f3N9qdX2UKGgGaAloD0MIhLpIoSz0MkCUhpRSlGgVTS0BaBZHQHbRwVbiZOV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96f2f12d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96f2f1360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96f2f13f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96f2f1480>", "_build": "<function ActorCriticPolicy._build at 0x7fa96f2f1510>", "forward": "<function ActorCriticPolicy.forward at 0x7fa96f2f15a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa96f2f1630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96f2f16c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa96f2f1750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96f2f17e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96f2f1870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96f2f1900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa96f51f780>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681854602905755734, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAO8+RkOK1RE8JmCMQgAAyEIAAMhCJGpmQtNUp0IAAMhCAADIQiXdnEJQ9RhDNol4P8t5LUIAAMhCAADIQgAAyEIAAMhC5LJZQqZux0G0lcpByENTQxBDFL8IBJVCTqujQgAAyEI6yaNCK/SUQgAAyEIAAMhC85+zQgkzakMukJW+AADIQgAAyEIAAMhCZOurQj1SOkK8aMZCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu7VMhqM0gMCUhpRSlIwBbJRLM4wBdJRHQHbgjK9wm3R1fZQoaAZoCWgPQwiBQdKnVQQ6wJSGlFKUaBVLYmgWR0B24Ndt2s7udX2UKGgGaAloD0MIkiIyrOJFMMCUhpRSlGgVS2FoFkdAduVINEw353V9lChoBmgJaA9DCL4yb9WViIDAlIaUUpRoFUtFaBZHQHbo9sJpnHx1fZQoaAZoCWgPQwizlgLS/nc4wJSGlFKUaBVLcmgWR0B26iTr3TNMdX2UKGgGaAloD0MIG2SSkbMAMsCUhpRSlGgVS0xoFkdAdupw/gR9PXV9lChoBmgJaA9DCInPnWCfNoDAlIaUUpRoFUs0aBZHQHbr8Qyylep1fZQoaAZoCWgPQwgO2NXkqcB/wJSGlFKUaBVLGWgWR0B27EvHtF8YdX2UKGgGaAloD0MIaOp1i8AAgMCUhpRSlGgVSxZoFkdAdu8gvUSZjXV9lChoBmgJaA9DCNKnVfRHaoDAlIaUUpRoFUs/aBZHQHbx8cU/OdJ1fZQoaAZoCWgPQwhJopdRDD6AwJSGlFKUaBVLNWgWR0B28m6shgVodX2UKGgGaAloD0MIFMstrYbIOsCUhpRSlGgVS2doFkdAdvX4VARkE3V9lChoBmgJaA9DCABxV68ivzXAlIaUUpRoFUtUaBZHQHb4TGxUvPF1fZQoaAZoCWgPQwgUXRd+0G2AwJSGlFKUaBVLPWgWR0B2+SyOaOPvdX2UKGgGaAloD0MIFhdH5YZXgMCUhpRSlGgVSzpoFkdAdv05zo2XLXV9lChoBmgJaA9DCHcSEf5FxDjAlIaUUpRoFUtxaBZHQHb/KcVgx8F1fZQoaAZoCWgPQwiBzM6id7I7wJSGlFKUaBVLbGgWR0B3B92KVII4dX2UKGgGaAloD0MIj+TyH9LbN8CUhpRSlGgVS3NoFkdAdwiZDzAerHV9lChoBmgJaA9DCJ7vp8aLZYDAlIaUUpRoFUs/aBZHQHcIoaDPGAF1fZQoaAZoCWgPQwhTlba4xuB/wJSGlFKUaBVLFWgWR0B3CuSNfgJkdX2UKGgGaAloD0MIorQ3+MKQO8CUhpRSlGgVS2loFkdAdw0keIVM23V9lChoBmgJaA9DCIwUysIXL4DAlIaUUpRoFUs2aBZHQHcR9cSoOx11fZQoaAZoCWgPQwjeHoSAfGEvwJSGlFKUaBVLUWgWR0B3FsVuaWondX2UKGgGaAloD0MINGjon+ACJMCUhpRSlGgVS01oFkdAdxo0j1PFenV9lChoBmgJaA9DCC4dc56RPIDAlIaUUpRoFUs2aBZHQHcgfek56t11fZQoaAZoCWgPQwiBzqRN1Vk1wJSGlFKUaBVLW2gWR0B3IsIWxhUjdX2UKGgGaAloD0MIaOkKthHPOMCUhpRSlGgVS3VoFkdAdyMcxCY1HnV9lChoBmgJaA9DCFW+ZySCR4DAlIaUUpRoFUs3aBZHQHcslVDKHO91fZQoaAZoCWgPQwhQbXAi+i05wJSGlFKUaBVLaWgWR0B3L0h8pkPMdX2UKGgGaAloD0MICM2ue4tbgMCUhpRSlGgVSztoFkdAdzBaBqbjLnV9lChoBmgJaA9DCOCcEaV9VoDAlIaUUpRoFUs7aBZHQHc+bVz6rNp1fZQoaAZoCWgPQwgNbmsLz+8+wJSGlFKUaBVLemgWR0B3QRJsfq5cdX2UKGgGaAloD0MImyFVFK/yNMCUhpRSlGgVS1xoFkdAd0TB5HEuQXV9lChoBmgJaA9DCLSwpx3+OjHAlIaUUpRoFUtOaBZHQHdRpdB0ITp1fZQoaAZoCWgPQwj3PlWFRmyAwJSGlFKUaBVLQGgWR0B3U/LcKw6idX2UKGgGaAloD0MI7YLBNffDgMCUhpRSlGgVS6loFkdAd1oHpbD/EXV9lChoBmgJaA9DCOV620yFZDnAlIaUUpRoFUttaBZHQHdbWEwnH/91fZQoaAZoCWgPQwgnamlu5UGAwJSGlFKUaBVLOWgWR0B3YOdUbT+edX2UKGgGaAloD0MIGR9mL3s9gMCUhpRSlGgVSzRoFkdAd2aKbrkbP3V9lChoBmgJaA9DCFt7n6pCKzXAlIaUUpRoFUtkaBZHQHdu8uzyBkJ1fZQoaAZoCWgPQwiKy/EKRMc5wJSGlFKUaBVLYGgWR0B3dOC/XXiBdX2UKGgGaAloD0MI8yGoGp37gMCUhpRSlGgVS6poFkdAd3bFnIyTIXV9lChoBmgJaA9DCALU1LK1xjbAlIaUUpRoFUttaBZHQHd9w8wHqu91fZQoaAZoCWgPQwisrG2KhxOAwJSGlFKUaBVLMGgWR0B3h2yOaOPvdX2UKGgGaAloD0MI8mCL3T5zPMCUhpRSlGgVS3VoFkdAd4f1WsA/93V9lChoBmgJaA9DCOtU+Z6RNDzAlIaUUpRoFUteaBZHQHeKGPtD2J11fZQoaAZoCWgPQwhwsaIG09g3wJSGlFKUaBVLamgWR0B3in8fms/6dX2UKGgGaAloD0MIE7ngDB5KgMCUhpRSlGgVSzdoFkdAd5Ho7muDBnV9lChoBmgJaA9DCBzPZ0DdG4DAlIaUUpRoFUsvaBZHQHeTJ2t+1Bt1fZQoaAZoCWgPQwiuvOR/0kaAwJSGlFKUaBVLOGgWR0B3k8dJaq0ddX2UKGgGaAloD0MIescpOpJhf8CUhpRSlGgVSxZoFkdAd5WDaoMrmXV9lChoBmgJaA9DCM1zRL5LeTnAlIaUUpRoFUtoaBZHQHeZb0aqCH11fZQoaAZoCWgPQwjXw5eJIjgwwJSGlFKUaBVLVWgWR0B3oRgeA/cGdX2UKGgGaAloD0MIvhb03rgvgMCUhpRSlGgVSzpoFkdAd6MFuvUz9HV9lChoBmgJaA9DCN+pgHuejzvAlIaUUpRoFUtsaBZHQHem0fT1CgN1fZQoaAZoCWgPQwh0CvKzkW86wJSGlFKUaBVLbWgWR0B3qMona37UdX2UKGgGaAloD0MIyZHOwOgvgMCUhpRSlGgVSzNoFkdAd7CqwhW5pnV9lChoBmgJaA9DCEXY8PRK9THAlIaUUpRoFUtbaBZHQHeywyuZCv51fZQoaAZoCWgPQwi22O2zyiA2wJSGlFKUaBVLcmgWR0B3ul9F4LThdX2UKGgGaAloD0MIgGPPnitNgMCUhpRSlGgVSzdoFkdAd7wSSeRPoHV9lChoBmgJaA9DCHlZEwt8bTbAlIaUUpRoFUt0aBZHQHfA0bcXWOJ1fZQoaAZoCWgPQwj7dac7T8wtwJSGlFKUaBVLTWgWR0B3xAAIY3vQdX2UKGgGaAloD0MITkcAN4ubPcCUhpRSlGgVS2RoFkdAd8yRsuWa+nV9lChoBmgJaA9DCET3rGv0aYDAlIaUUpRoFUs8aBZHQHfMwEEC/491fZQoaAZoCWgPQwjW5v9VR3o1wJSGlFKUaBVLZ2gWR0B3zhcry1/ldX2UKGgGaAloD0MIngd3Z+2sf8CUhpRSlGgVSxZoFkdAd88vHLida3V9lChoBmgJaA9DCOmZXmIs6zbAlIaUUpRoFUtvaBZHQHfRIlD4QBh1fZQoaAZoCWgPQwi5bHTOb1eAwJSGlFKUaBVLOmgWR0B30x2W6bvxdX2UKGgGaAloD0MIWaX0TM9hgMCUhpRSlGgVS0FoFkdAd9cSJTER8XV9lChoBmgJaA9DCD4mUpoNbYDAlIaUUpRoFUtBaBZHQHfaQQL/jsF1fZQoaAZoCWgPQwgC8iVUcFA7wJSGlFKUaBVLdWgWR0B33YA80UGndX2UKGgGaAloD0MIM6MfDcdZgMCUhpRSlGgVSztoFkdAd9//zreImHV9lChoBmgJaA9DCCNrDaX2bjfAlIaUUpRoFUtcaBZHQHfgWfK6nR91fZQoaAZoCWgPQwglsaTcnWmAwJSGlFKUaBVLOmgWR0B35jjuKGcndX2UKGgGaAloD0MINLqD2JmGNsCUhpRSlGgVS1hoFkdAd+eVyWAwwnV9lChoBmgJaA9DCNC1L6A3PoDAlIaUUpRoFUs5aBZHQHfp9VJcxCZ1fZQoaAZoCWgPQwhKtrqckiCAwJSGlFKUaBVLM2gWR0B37+Q7tAs1dX2UKGgGaAloD0MIHZJaKJmcJMCUhpRSlGgVS0ZoFkdAd/G5xzaK13V9lChoBmgJaA9DCEm6ZvLNMjzAlIaUUpRoFUttaBZHQHfxuy7f51x1fZQoaAZoCWgPQwj9bOS6iWSAwJSGlFKUaBVLQGgWR0B3+y1RceKbdX2UKGgGaAloD0MIIJvkR7xAgMCUhpRSlGgVSzVoFkdAd/u1qFh5PnV9lChoBmgJaA9DCGvT2F4LmjfAlIaUUpRoFUttaBZHQHf9B3aBZp11fZQoaAZoCWgPQwgzbmqgOVuAwJSGlFKUaBVLPGgWR0B3/TQa72+PdX2UKGgGaAloD0MIuwopPylZgMCUhpRSlGgVSz1oFkdAeAdWWyC4BnV9lChoBmgJaA9DCAYP0755SoDAlIaUUpRoFUs3aBZHQHgHdmL9/Bp1fZQoaAZoCWgPQwhKYkm5WwiAwJSGlFKUaBVLGmgWR0B4C21UlzEKdX2UKGgGaAloD0MInznrU46/QMCUhpRSlGgVS2loFkdAeA1PGhmGunV9lChoBmgJaA9DCBo09E9wuTfAlIaUUpRoFUtxaBZHQHgPmsvIwM91fZQoaAZoCWgPQwinrRHBuP1/wJSGlFKUaBVLF2gWR0B4E0wrUb1idX2UKGgGaAloD0MI22rWGd/nOsCUhpRSlGgVS2poFkdAeBg/tY0VJ3V9lChoBmgJaA9DCOM0RBX+eD7AlIaUUpRoFUtuaBZHQHgeXBpHqeN1fZQoaAZoCWgPQwisHcU56oQ5wJSGlFKUaBVLbmgWR0B4IfCaZx7zdX2UKGgGaAloD0MIxLEubqNxNcCUhpRSlGgVS2ZoFkdAeCdEpy6tknV9lChoBmgJaA9DCEaaeAc4KIDAlIaUUpRoFUsxaBZHQHgntvXK8th1fZQoaAZoCWgPQwhf1O5XAbZAwJSGlFKUaBVLZWgWR0B4K7jS5RTCdX2UKGgGaAloD0MIUDqRYOoPgMCUhpRSlGgVSzBoFkdAeDCm1IAfdXV9lChoBmgJaA9DCE890uC2ijjAlIaUUpRoFUtxaBZHQHg3rteD3/R1fZQoaAZoCWgPQwhSfHxCdn45wJSGlFKUaBVLZ2gWR0B4PK3Ytg8bdX2UKGgGaAloD0MIXyUfu+tLgMCUhpRSlGgVSzxoFkdAeD0byYoiLXV9lChoBmgJaA9DCI81I4PcrTTAlIaUUpRoFUtWaBZHQHg9crRSgoR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d5291f99ab8c32eb474cfb003ec1643f555ad58ccd6e557e2afa3dc92eb7588
|
3 |
+
size 824034
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -522.0431522308351, "std_reward": 1.1368683772161603e-13, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T14:56:48.347237"}
|