Upload model to Hugging Face
Browse files- .gitattributes +1 -0
- BC-harcodemap-punish-stagnant-no-training.zip +3 -0
- BC-harcodemap-punish-stagnant-no-training/_stable_baselines3_version +1 -0
- BC-harcodemap-punish-stagnant-no-training/data +95 -0
- BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth +3 -0
- BC-harcodemap-punish-stagnant-no-training/policy.pth +3 -0
- BC-harcodemap-punish-stagnant-no-training/pytorch_variables.pth +3 -0
- BC-harcodemap-punish-stagnant-no-training/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
BC-harcodemap-punish-stagnant-no-training.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aae8d0f32449044df4e00a471ec26357bdd0488eda4d7be161ba8ca4e2393418
|
3 |
+
size 44014
|
BC-harcodemap-punish-stagnant-no-training/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
BC-harcodemap-punish-stagnant-no-training/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fad27ae91b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad27ae9240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad27ae92d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad27ae9360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fad27ae93f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fad27ae9480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad27ae9510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad27ae95a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fad27ae9630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad27ae96c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad27ae9750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad27ae97e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fad27ade940>"
|
21 |
+
},
|
22 |
+
"verbose": true,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
10
|
30 |
+
],
|
31 |
+
"low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
|
32 |
+
"high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
|
33 |
+
"bounded_below": "[ True True True True True True True True True True]",
|
34 |
+
"bounded_above": "[ True True True True True True True True True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 24576,
|
47 |
+
"_total_timesteps": 20000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1681937810769359417,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAIfv4UIRMbE+aVVVQgAAyEK61CxCiq85Qp/bfkIAAMhCAADIQitvmUJCaV5DD8I8QAAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEK3C/pB+d/AQl4mXT2jFglCAADIQgAAyEIB8C9CEAFtQgyUs0IAAMhCAADIQuEVvEKfFVU+f28FQgAAyEIAAMhCXFNGQv5gp0IAAMhCAADIQtmJiUKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.2287999999999999,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc9U8R6SIh8CUhpRSlIwBbJRLDIwBdJRHQFW0ronrpq11fZQoaAZoCWgPQwg4pFGB0xOHwJSGlFKUaBVLC2gWR0BVtqWszVMFdX2UKGgGaAloD0MIK4cW2W4RhcCUhpRSlGgVSxJoFkdAVb+8brC3w3V9lChoBmgJaA9DCDXxDvBkOYfAlIaUUpRoFUsJaBZHQFXFQVsUIs11fZQoaAZoCWgPQwhntFVJZMGGwJSGlFKUaBVLCmgWR0BVywXl8w6AdX2UKGgGaAloD0MI7GmHv8boicCUhpRSlGgVSyloFkdAVcvvmYBvJnV9lChoBmgJaA9DCDIge73bbofAlIaUUpRoFUsOaBZHQFXTQ53kgfV1fZQoaAZoCWgPQwhaSpaTMA+HwJSGlFKUaBVLCWgWR0BV2AiNbTttdX2UKGgGaAloD0MIj/zBwFPlkMCUhpRSlGgVS3FoFkdAVd8Yk3S8anV9lChoBmgJaA9DCIUi3c/JlonAlIaUUpRoFUsuaBZHQFXnbNKRMex1fZQoaAZoCWgPQwiSA3Y1GfGEwJSGlFKUaBVLEWgWR0BV6NIPK+zudX2UKGgGaAloD0MIrW2Kx4Vsh8CUhpRSlGgVSwloFkdAVe3cCYCyQnV9lChoBmgJaA9DCMmqCDfZUI/AlIaUUpRoFUtzaBZHQFXxcB2fTTh1fZQoaAZoCWgPQwiqDrkZLjiJwJSGlFKUaBVLLWgWR0BV8nE2pAD8dX2UKGgGaAloD0MITz3S4NaGh8CUhpRSlGgVSw1oFkdAVfZSGahHsnV9lChoBmgJaA9DCCF4fHtXGofAlIaUUpRoFUsMaBZHQFX7lSjxkNF1fZQoaAZoCWgPQwi2upwSMGiEwJSGlFKUaBVLD2gWR0BV/Ar1/Ue/dX2UKGgGaAloD0MIo3TpX7Irh8CUhpRSlGgVSwpoFkdAVgFgG8mKInV9lChoBmgJaA9DCNwRTgteqIbAlIaUUpRoFUsQaBZHQFYDFvhqCYl1fZQoaAZoCWgPQwhUOe0pWQ2HwJSGlFKUaBVLDWgWR0BWB1LWZqmCdX2UKGgGaAloD0MIE9OFWL0hhcCUhpRSlGgVSxBoFkdAVgwV8CxNZnV9lChoBmgJaA9DCLlRZK2BK4bAlIaUUpRoFUsOaBZHQFYPyoXKr7x1fZQoaAZoCWgPQwiq04Gsp0mJwJSGlFKUaBVLMGgWR0BWENSAH3UQdX2UKGgGaAloD0MI9gt2wzY4h8CUhpRSlGgVSwtoFkdAVhF2St/4I3V9lChoBmgJaA9DCJ0SEJPQT4fAlIaUUpRoFUsLaBZHQFYU1+iJwbV1fZQoaAZoCWgPQwiUE+0qRFqHwJSGlFKUaBVLCmgWR0BWFd7ngYP5dX2UKGgGaAloD0MIBp0QOmhihsCUhpRSlGgVSw1oFkdAVheLBKtga3V9lChoBmgJaA9DCDs0LEYtR5vAlIaUUpRoFUtiaBZHQFYe7GNrCWN1fZQoaAZoCWgPQwg1JVmHQyyGwJSGlFKUaBVLDGgWR0BWH6bayrxRdX2UKGgGaAloD0MIl8lwPJ/YicCUhpRSlGgVSy9oFkdAVjP/yXlbNnV9lChoBmgJaA9DCNLEO8DTZ4fAlIaUUpRoFUsJaBZHQFY52r4nF5x1fZQoaAZoCWgPQwhbzqW46vaAwJSGlFKUaBVLJ2gWR0BWOdsBQvYfdX2UKGgGaAloD0MIFD5bB/ftl8CUhpRSlGgVSzxoFkdAVjqw7kn1F3V9lChoBmgJaA9DCAq5Us9CfI7AlIaUUpRoFUsvaBZHQFY+EZR8+id1fZQoaAZoCWgPQwhYObTIlpOGwJSGlFKUaBVLDGgWR0BWQ2cJ+lTFdX2UKGgGaAloD0MIISI17SIbh8CUhpRSlGgVSw5oFkdAVkSvzOHFgnV9lChoBmgJaA9DCOKTTiSYLIbAlIaUUpRoFUsMaBZHQFZEwudwvQF1fZQoaAZoCWgPQwgnhuRkoiWHwJSGlFKUaBVLCWgWR0BWTW1D0DlpdX2UKGgGaAloD0MIijve5Fceh8CUhpRSlGgVSw1oFkdAVk7zasZHeHV9lChoBmgJaA9DCJSGGoVE1IbAlIaUUpRoFUsNaBZHQFZQMg2ZRbd1fZQoaAZoCWgPQwjAsPz5VpqHwJSGlFKUaBVLCmgWR0BWVU1AJLM+dX2UKGgGaAloD0MIHOxNDIn0hsCUhpRSlGgVSwxoFkdAVlkuVX3g1nV9lChoBmgJaA9DCD//PXjttIbAlIaUUpRoFUsLaBZHQFZZtO2y9mJ1fZQoaAZoCWgPQwhH5LuU+kqHwJSGlFKUaBVLC2gWR0BWXnos7MgVdX2UKGgGaAloD0MI4X8r2THxhsCUhpRSlGgVSwpoFkdAVmGx5cC5mXV9lChoBmgJaA9DCFpIwOgSwY7AlIaUUpRoFUstaBZHQFZjHFglWwN1fZQoaAZoCWgPQwjdXz3uu4GGwJSGlFKUaBVLDmgWR0BWYxrFfiPydX2UKGgGaAloD0MIJH8w8BwAh8CUhpRSlGgVSwxoFkdAVmvAP/aQFXV9lChoBmgJaA9DCPkTlQ0riYbAlIaUUpRoFUsLaBZHQFZssxfv4M51fZQoaAZoCWgPQwj0F3rE2FOSQJSGlFKUaBVLGWgWR0BWcr4WUKRddX2UKGgGaAloD0MIUOEIUglwhsCUhpRSlGgVSw5oFkdAVngB0ZFXrHV9lChoBmgJaA9DCBizJavSu5NAlIaUUpRoFUsbaBZHQFZ8gsK9f1J1fZQoaAZoCWgPQwhkdha98wKHwJSGlFKUaBVLC2gWR0BWfewkgOjJdX2UKGgGaAloD0MIhNkEGLa9hcCUhpRSlGgVSxNoFkdAVn6Wa+evp3V9lChoBmgJaA9DCDXxDvBkOYfAlIaUUpRoFUsJaBZHQFaBBa9sabZ1fZQoaAZoCWgPQwjWAntMBOuGwJSGlFKUaBVLC2gWR0BWimdiDujRdX2UKGgGaAloD0MIhuXPt2X7hsCUhpRSlGgVSwtoFkdAVovzshPj43V9lChoBmgJaA9DCFTHKqVHW4bAlIaUUpRoFUsPaBZHQFaMyrgflp51fZQoaAZoCWgPQwhAvoQKLkSHwJSGlFKUaBVLDGgWR0BWk2YrrgO0dX2UKGgGaAloD0MIYqJBCp4Qh8CUhpRSlGgVSw5oFkdAVpWnfl6qsHV9lChoBmgJaA9DCDbIJCPnG4fAlIaUUpRoFUsOaBZHQFaWOWSlnAZ1fZQoaAZoCWgPQwjQ1VbsT1iGwJSGlFKUaBVLDGgWR0BWmoGdI5HVdX2UKGgGaAloD0MIT6+UZUh0i8CUhpRSlGgVSypoFkdAVpzb7CSA6XV9lChoBmgJaA9DCF+1MuG38YbAlIaUUpRoFUsMaBZHQFadgYP5HmR1fZQoaAZoCWgPQwjQuHAgRM+GwJSGlFKUaBVLDWgWR0BWolsDW9UTdX2UKGgGaAloD0MIbR0c7G07h8CUhpRSlGgVSwtoFkdAVqXW6K+BYnV9lChoBmgJaA9DCP28qUglrobAlIaUUpRoFUsLaBZHQFas30wrUb11fZQoaAZoCWgPQwjogvqWOX2GwJSGlFKUaBVLDGgWR0BWtoUFjd56dX2UKGgGaAloD0MIiulCrF7Pj8CUhpRSlGgVSy9oFkdAVroq6OHWSXV9lChoBmgJaA9DCBbB/1ayIYfAlIaUUpRoFUsKaBZHQFa/51eSjg11fZQoaAZoCWgPQwiCxeHML1+KwJSGlFKUaBVLLGgWR0BWwaCtihFmdX2UKGgGaAloD0MIshLzrGTkhsCUhpRSlGgVSwxoFkdAVsVbMX7+DXV9lChoBmgJaA9DCL5sO21tlIbAlIaUUpRoFUsNaBZHQFbMOPNmlIp1fZQoaAZoCWgPQwh7EW3HdHyHwJSGlFKUaBVLC2gWR0BWzH003wTedX2UKGgGaAloD0MIlrA2xs6WhsCUhpRSlGgVSwxoFkdAVs+QYDTz/nV9lChoBmgJaA9DCAjpKXIogJHAlIaUUpRoFUs3aBZHQFbUByCFsYV1fZQoaAZoCWgPQwgvFRvz+huGwJSGlFKUaBVLDGgWR0BW1BLkCFK1dX2UKGgGaAloD0MIJCnpYagnh8CUhpRSlGgVSwpoFkdAVtsW3z+WGHV9lChoBmgJaA9DCN3qOeldA5DAlIaUUpRoFUsraBZHQFbveC04R291fZQoaAZoCWgPQwi5bHTOX+WSQJSGlFKUaBVLH2gWR0BW77cXWOIZdX2UKGgGaAloD0MIFr8prLRIh8CUhpRSlGgVSwpoFkdAVvh7RfF72XV9lChoBmgJaA9DCP5/nDAB85HAlIaUUpRoFUs0aBZHQFb66WgOBlN1fZQoaAZoCWgPQwi/gF6407iGwJSGlFKUaBVLEGgWR0BW/stCiRGMdX2UKGgGaAloD0MI+ie4WDE3h8CUhpRSlGgVSwpoFkdAVwee7L+xW3V9lChoBmgJaA9DCOgTeZJEvpHAlIaUUpRoFUsyaBZHQFcJvxH5Jsh1fZQoaAZoCWgPQwgEAp1Jm3KHwJSGlFKUaBVLCWgWR0BXD5lnRLK3dX2UKGgGaAloD0MIcJS8Ooc1h8CUhpRSlGgVSwtoFkdAVxSkadc0L3V9lChoBmgJaA9DCNECtK2mEYfAlIaUUpRoFUsLaBZHQFcaqVyFPBV1fZQoaAZoCWgPQwhcBTHQlWmGwJSGlFKUaBVLC2gWR0BXJK+SKWLQdX2UKGgGaAloD0MI8MLWbKUvicCUhpRSlGgVSy9oFkdAVyhklNUOu3V9lChoBmgJaA9DCFOwxtkUdYbAlIaUUpRoFUsOaBZHQFczLb5/LDB1fZQoaAZoCWgPQwhb6bXZmAiGwJSGlFKUaBVLDmgWR0BXNP4REnb7dX2UKGgGaAloD0MI2A+xwULdhsCUhpRSlGgVSw5oFkdAVz9nctXgcnV9lChoBmgJaA9DCKCKG7eIi5TAlIaUUpRoFUs0aBZHQFdFrsjVx0d1fZQoaAZoCWgPQwg3/G66xaOGwJSGlFKUaBVLD2gWR0BXTUXk5p8GdX2UKGgGaAloD0MIEas/wnBRh8CUhpRSlGgVSwxoFkdAV1AoWpIcznV9lChoBmgJaA9DCMEZ/P2ylJTAlIaUUpRoFUtlaBZHQFdWoJzDGcZ1fZQoaAZoCWgPQwjZB1kWTAOHwJSGlFKUaBVLC2gWR0BXW4UFjd56dX2UKGgGaAloD0MIOWBXkwcJhcCUhpRSlGgVSxFoFkdAV10vN/vv0HV9lChoBmgJaA9DCL3kf/KX8YbAlIaUUpRoFUsKaBZHQFdiCUHIIWx1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 30,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.001,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
BC-harcodemap-punish-stagnant-no-training/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eba13d3c5e4f29b5ca41d2c6d52d6647b5c7a97f18ccd11e45c9abb365affa0b
|
3 |
+
size 18973
|
BC-harcodemap-punish-stagnant-no-training/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ceeac03c13e90711640b174f3312c790988fcd73dee064b91f5b400c81bae7ae
|
3 |
+
size 9295
|
BC-harcodemap-punish-stagnant-no-training/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
BC-harcodemap-punish-stagnant-no-training/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- RoombaAToB-harcodemap-punish-stagnant-no-training
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: BC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: RoombaAToB-harcodemap-punish-stagnant-no-training
|
16 |
+
type: RoombaAToB-harcodemap-punish-stagnant-no-training
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -604.52 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **BC** Agent playing **RoombaAToB-harcodemap-punish-stagnant-no-training**
|
25 |
+
This is a trained model of a **BC** agent playing **RoombaAToB-harcodemap-punish-stagnant-no-training**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad27ae91b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad27ae9240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad27ae92d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad27ae9360>", "_build": "<function ActorCriticPolicy._build at 0x7fad27ae93f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fad27ae9480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad27ae9510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad27ae95a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fad27ae9630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad27ae96c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad27ae9750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad27ae97e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fad27ade940>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 24576, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681937810769359417, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAIfv4UIRMbE+aVVVQgAAyEK61CxCiq85Qp/bfkIAAMhCAADIQitvmUJCaV5DD8I8QAAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEK3C/pB+d/AQl4mXT2jFglCAADIQgAAyEIB8C9CEAFtQgyUs0IAAMhCAADIQuEVvEKfFVU+f28FQgAAyEIAAMhCXFNGQv5gp0IAAMhCAADIQtmJiUKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.2287999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc9U8R6SIh8CUhpRSlIwBbJRLDIwBdJRHQFW0ronrpq11fZQoaAZoCWgPQwg4pFGB0xOHwJSGlFKUaBVLC2gWR0BVtqWszVMFdX2UKGgGaAloD0MIK4cW2W4RhcCUhpRSlGgVSxJoFkdAVb+8brC3w3V9lChoBmgJaA9DCDXxDvBkOYfAlIaUUpRoFUsJaBZHQFXFQVsUIs11fZQoaAZoCWgPQwhntFVJZMGGwJSGlFKUaBVLCmgWR0BVywXl8w6AdX2UKGgGaAloD0MI7GmHv8boicCUhpRSlGgVSyloFkdAVcvvmYBvJnV9lChoBmgJaA9DCDIge73bbofAlIaUUpRoFUsOaBZHQFXTQ53kgfV1fZQoaAZoCWgPQwhaSpaTMA+HwJSGlFKUaBVLCWgWR0BV2AiNbTttdX2UKGgGaAloD0MIj/zBwFPlkMCUhpRSlGgVS3FoFkdAVd8Yk3S8anV9lChoBmgJaA9DCIUi3c/JlonAlIaUUpRoFUsuaBZHQFXnbNKRMex1fZQoaAZoCWgPQwiSA3Y1GfGEwJSGlFKUaBVLEWgWR0BV6NIPK+zudX2UKGgGaAloD0MIrW2Kx4Vsh8CUhpRSlGgVSwloFkdAVe3cCYCyQnV9lChoBmgJaA9DCMmqCDfZUI/AlIaUUpRoFUtzaBZHQFXxcB2fTTh1fZQoaAZoCWgPQwiqDrkZLjiJwJSGlFKUaBVLLWgWR0BV8nE2pAD8dX2UKGgGaAloD0MITz3S4NaGh8CUhpRSlGgVSw1oFkdAVfZSGahHsnV9lChoBmgJaA9DCCF4fHtXGofAlIaUUpRoFUsMaBZHQFX7lSjxkNF1fZQoaAZoCWgPQwi2upwSMGiEwJSGlFKUaBVLD2gWR0BV/Ar1/Ue/dX2UKGgGaAloD0MIo3TpX7Irh8CUhpRSlGgVSwpoFkdAVgFgG8mKInV9lChoBmgJaA9DCNwRTgteqIbAlIaUUpRoFUsQaBZHQFYDFvhqCYl1fZQoaAZoCWgPQwhUOe0pWQ2HwJSGlFKUaBVLDWgWR0BWB1LWZqmCdX2UKGgGaAloD0MIE9OFWL0hhcCUhpRSlGgVSxBoFkdAVgwV8CxNZnV9lChoBmgJaA9DCLlRZK2BK4bAlIaUUpRoFUsOaBZHQFYPyoXKr7x1fZQoaAZoCWgPQwiq04Gsp0mJwJSGlFKUaBVLMGgWR0BWENSAH3UQdX2UKGgGaAloD0MI9gt2wzY4h8CUhpRSlGgVSwtoFkdAVhF2St/4I3V9lChoBmgJaA9DCJ0SEJPQT4fAlIaUUpRoFUsLaBZHQFYU1+iJwbV1fZQoaAZoCWgPQwiUE+0qRFqHwJSGlFKUaBVLCmgWR0BWFd7ngYP5dX2UKGgGaAloD0MIBp0QOmhihsCUhpRSlGgVSw1oFkdAVheLBKtga3V9lChoBmgJaA9DCDs0LEYtR5vAlIaUUpRoFUtiaBZHQFYe7GNrCWN1fZQoaAZoCWgPQwg1JVmHQyyGwJSGlFKUaBVLDGgWR0BWH6bayrxRdX2UKGgGaAloD0MIl8lwPJ/YicCUhpRSlGgVSy9oFkdAVjP/yXlbNnV9lChoBmgJaA9DCNLEO8DTZ4fAlIaUUpRoFUsJaBZHQFY52r4nF5x1fZQoaAZoCWgPQwhbzqW46vaAwJSGlFKUaBVLJ2gWR0BWOdsBQvYfdX2UKGgGaAloD0MIFD5bB/ftl8CUhpRSlGgVSzxoFkdAVjqw7kn1F3V9lChoBmgJaA9DCAq5Us9CfI7AlIaUUpRoFUsvaBZHQFY+EZR8+id1fZQoaAZoCWgPQwhYObTIlpOGwJSGlFKUaBVLDGgWR0BWQ2cJ+lTFdX2UKGgGaAloD0MIISI17SIbh8CUhpRSlGgVSw5oFkdAVkSvzOHFgnV9lChoBmgJaA9DCOKTTiSYLIbAlIaUUpRoFUsMaBZHQFZEwudwvQF1fZQoaAZoCWgPQwgnhuRkoiWHwJSGlFKUaBVLCWgWR0BWTW1D0DlpdX2UKGgGaAloD0MIijve5Fceh8CUhpRSlGgVSw1oFkdAVk7zasZHeHV9lChoBmgJaA9DCJSGGoVE1IbAlIaUUpRoFUsNaBZHQFZQMg2ZRbd1fZQoaAZoCWgPQwjAsPz5VpqHwJSGlFKUaBVLCmgWR0BWVU1AJLM+dX2UKGgGaAloD0MIHOxNDIn0hsCUhpRSlGgVSwxoFkdAVlkuVX3g1nV9lChoBmgJaA9DCD//PXjttIbAlIaUUpRoFUsLaBZHQFZZtO2y9mJ1fZQoaAZoCWgPQwhH5LuU+kqHwJSGlFKUaBVLC2gWR0BWXnos7MgVdX2UKGgGaAloD0MI4X8r2THxhsCUhpRSlGgVSwpoFkdAVmGx5cC5mXV9lChoBmgJaA9DCFpIwOgSwY7AlIaUUpRoFUstaBZHQFZjHFglWwN1fZQoaAZoCWgPQwjdXz3uu4GGwJSGlFKUaBVLDmgWR0BWYxrFfiPydX2UKGgGaAloD0MIJH8w8BwAh8CUhpRSlGgVSwxoFkdAVmvAP/aQFXV9lChoBmgJaA9DCPkTlQ0riYbAlIaUUpRoFUsLaBZHQFZssxfv4M51fZQoaAZoCWgPQwj0F3rE2FOSQJSGlFKUaBVLGWgWR0BWcr4WUKRddX2UKGgGaAloD0MIUOEIUglwhsCUhpRSlGgVSw5oFkdAVngB0ZFXrHV9lChoBmgJaA9DCBizJavSu5NAlIaUUpRoFUsbaBZHQFZ8gsK9f1J1fZQoaAZoCWgPQwhkdha98wKHwJSGlFKUaBVLC2gWR0BWfewkgOjJdX2UKGgGaAloD0MIhNkEGLa9hcCUhpRSlGgVSxNoFkdAVn6Wa+evp3V9lChoBmgJaA9DCDXxDvBkOYfAlIaUUpRoFUsJaBZHQFaBBa9sabZ1fZQoaAZoCWgPQwjWAntMBOuGwJSGlFKUaBVLC2gWR0BWimdiDujRdX2UKGgGaAloD0MIhuXPt2X7hsCUhpRSlGgVSwtoFkdAVovzshPj43V9lChoBmgJaA9DCFTHKqVHW4bAlIaUUpRoFUsPaBZHQFaMyrgflp51fZQoaAZoCWgPQwhAvoQKLkSHwJSGlFKUaBVLDGgWR0BWk2YrrgO0dX2UKGgGaAloD0MIYqJBCp4Qh8CUhpRSlGgVSw5oFkdAVpWnfl6qsHV9lChoBmgJaA9DCDbIJCPnG4fAlIaUUpRoFUsOaBZHQFaWOWSlnAZ1fZQoaAZoCWgPQwjQ1VbsT1iGwJSGlFKUaBVLDGgWR0BWmoGdI5HVdX2UKGgGaAloD0MIT6+UZUh0i8CUhpRSlGgVSypoFkdAVpzb7CSA6XV9lChoBmgJaA9DCF+1MuG38YbAlIaUUpRoFUsMaBZHQFadgYP5HmR1fZQoaAZoCWgPQwjQuHAgRM+GwJSGlFKUaBVLDWgWR0BWolsDW9UTdX2UKGgGaAloD0MIbR0c7G07h8CUhpRSlGgVSwtoFkdAVqXW6K+BYnV9lChoBmgJaA9DCP28qUglrobAlIaUUpRoFUsLaBZHQFas30wrUb11fZQoaAZoCWgPQwjogvqWOX2GwJSGlFKUaBVLDGgWR0BWtoUFjd56dX2UKGgGaAloD0MIiulCrF7Pj8CUhpRSlGgVSy9oFkdAVroq6OHWSXV9lChoBmgJaA9DCBbB/1ayIYfAlIaUUpRoFUsKaBZHQFa/51eSjg11fZQoaAZoCWgPQwiCxeHML1+KwJSGlFKUaBVLLGgWR0BWwaCtihFmdX2UKGgGaAloD0MIshLzrGTkhsCUhpRSlGgVSwxoFkdAVsVbMX7+DXV9lChoBmgJaA9DCL5sO21tlIbAlIaUUpRoFUsNaBZHQFbMOPNmlIp1fZQoaAZoCWgPQwh7EW3HdHyHwJSGlFKUaBVLC2gWR0BWzH003wTedX2UKGgGaAloD0MIlrA2xs6WhsCUhpRSlGgVSwxoFkdAVs+QYDTz/nV9lChoBmgJaA9DCAjpKXIogJHAlIaUUpRoFUs3aBZHQFbUByCFsYV1fZQoaAZoCWgPQwgvFRvz+huGwJSGlFKUaBVLDGgWR0BW1BLkCFK1dX2UKGgGaAloD0MIJCnpYagnh8CUhpRSlGgVSwpoFkdAVtsW3z+WGHV9lChoBmgJaA9DCN3qOeldA5DAlIaUUpRoFUsraBZHQFbveC04R291fZQoaAZoCWgPQwi5bHTOX+WSQJSGlFKUaBVLH2gWR0BW77cXWOIZdX2UKGgGaAloD0MIFr8prLRIh8CUhpRSlGgVSwpoFkdAVvh7RfF72XV9lChoBmgJaA9DCP5/nDAB85HAlIaUUpRoFUs0aBZHQFb66WgOBlN1fZQoaAZoCWgPQwi/gF6407iGwJSGlFKUaBVLEGgWR0BW/stCiRGMdX2UKGgGaAloD0MI+ie4WDE3h8CUhpRSlGgVSwpoFkdAVwee7L+xW3V9lChoBmgJaA9DCOgTeZJEvpHAlIaUUpRoFUsyaBZHQFcJvxH5Jsh1fZQoaAZoCWgPQwgEAp1Jm3KHwJSGlFKUaBVLCWgWR0BXD5lnRLK3dX2UKGgGaAloD0MIcJS8Ooc1h8CUhpRSlGgVSwtoFkdAVxSkadc0L3V9lChoBmgJaA9DCNECtK2mEYfAlIaUUpRoFUsLaBZHQFcaqVyFPBV1fZQoaAZoCWgPQwhcBTHQlWmGwJSGlFKUaBVLC2gWR0BXJK+SKWLQdX2UKGgGaAloD0MI8MLWbKUvicCUhpRSlGgVSy9oFkdAVyhklNUOu3V9lChoBmgJaA9DCFOwxtkUdYbAlIaUUpRoFUsOaBZHQFczLb5/LDB1fZQoaAZoCWgPQwhb6bXZmAiGwJSGlFKUaBVLDmgWR0BXNP4REnb7dX2UKGgGaAloD0MI2A+xwULdhsCUhpRSlGgVSw5oFkdAVz9nctXgcnV9lChoBmgJaA9DCKCKG7eIi5TAlIaUUpRoFUs0aBZHQFdFrsjVx0d1fZQoaAZoCWgPQwg3/G66xaOGwJSGlFKUaBVLD2gWR0BXTUXk5p8GdX2UKGgGaAloD0MIEas/wnBRh8CUhpRSlGgVSwxoFkdAV1AoWpIcznV9lChoBmgJaA9DCMEZ/P2ylJTAlIaUUpRoFUtlaBZHQFdWoJzDGcZ1fZQoaAZoCWgPQwjZB1kWTAOHwJSGlFKUaBVLC2gWR0BXW4UFjd56dX2UKGgGaAloD0MIOWBXkwcJhcCUhpRSlGgVSxFoFkdAV10vN/vv0HV9lChoBmgJaA9DCL3kf/KX8YbAlIaUUpRoFUsKaBZHQFdiCUHIIWx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2eddd4fb095654348c8a70f9582f9b383953249f3c1c11c0f8b249907134931
|
3 |
+
size 1255693
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -604.5167945098877, "std_reward": 1.1368683772161603e-13, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T13:58:50.840096"}
|