--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d1b8ff5d-b9aa-491a-baff-622a5ecd21bb results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto bnb_config_kwargs: bnb_4bit_quant_type: nf4 bnb_4bit_use_double_quant: true chat_template: llama3 cosine_min_lr_ratio: 0.1 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 422de410c10946dc_train_data.json ds_type: json path: /workspace/input_data/422de410c10946dc_train_data.json type: field_input: original-context field_instruction: category field_output: original-instruction field_system: original-response system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: '{'''':torch.cuda.current_device()}' do_eval: true early_stopping_patience: 1 eval_batch_size: 1 eval_sample_packing: false eval_steps: 25 evaluation_strategy: steps flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: true hub_model_id: cwaud/d1b8ff5d-b9aa-491a-baff-622a5ecd21bb hub_repo: cwaud hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GiB 1: 70GiB 2: 70GiB 3: 70GiB max_steps: 800 micro_batch_size: 1 mlflow_experiment_name: /tmp/422de410c10946dc_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 save_strategy: steps sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: false train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: rayonlabs-rayon-labs wandb_mode: online wandb_name: d1b8ff5d-b9aa-491a-baff-622a5ecd21bb wandb_project: Public_TuningSN wandb_run: miner_id_24 wandb_runid: d1b8ff5d-b9aa-491a-baff-622a5ecd21bb warmup_raio: 0.03 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: null ```

# d1b8ff5d-b9aa-491a-baff-622a5ecd21bb This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 23 - training_steps: 465 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.8785 | 0.0086 | 1 | 5.1108 | | 2.4538 | 0.2152 | 25 | 1.5650 | | 1.7722 | 0.4305 | 50 | 1.3281 | | 1.8408 | 0.6457 | 75 | 1.2648 | | 1.6735 | 0.8609 | 100 | 1.2357 | | 0.8049 | 1.0761 | 125 | 1.2327 | | 0.8683 | 1.2914 | 150 | 1.2016 | | 0.8795 | 1.5066 | 175 | 1.1929 | | 0.797 | 1.7218 | 200 | 1.1888 | | 0.8046 | 1.9370 | 225 | 1.1573 | | 0.9134 | 2.1523 | 250 | 1.1941 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1