Upload model
Browse files- config.json +4 -0
- modeling_blast.py +244 -0
config.json
CHANGED
@@ -4,6 +4,10 @@
|
|
4 |
],
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
|
|
|
|
|
|
|
|
7 |
"blast_num_blocks": [
|
8 |
16
|
9 |
],
|
|
|
4 |
],
|
5 |
"attention_bias": false,
|
6 |
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "modeling_blast.BlastLlamaConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_blast.BlastModelForCausalLM"
|
10 |
+
},
|
11 |
"blast_num_blocks": [
|
12 |
16
|
13 |
],
|
modeling_blast.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from transformers import PretrainedConfig, LlamaConfig, LlamaModel, LlamaForCausalLM
|
8 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding, LlamaRMSNorm
|
9 |
+
from typing import List, Union, Tuple
|
10 |
+
|
11 |
+
from huggingface_hub import PyTorchModelHubMixin
|
12 |
+
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
|
17 |
+
class BlastLlamaConfig(LlamaConfig):
|
18 |
+
model_type = "blast_llama"
|
19 |
+
keys_to_ignore_at_inference = ["blast_decomposed_weight_path"]
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],
|
23 |
+
blast_rank={'q_proj': 1024, 'k_proj': 1024, 'v_proj': 1024, 'o_proj': 1024, 'gate_proj': 1488, 'up_proj': 1488, 'down_proj': 1488},
|
24 |
+
blast_num_blocks: Union[Union[List, Tuple], int] = 4,
|
25 |
+
indices=[i for i in range(32)],
|
26 |
+
precompute_matrix=False,
|
27 |
+
**kwargs,
|
28 |
+
):
|
29 |
+
self.target_modules = target_modules
|
30 |
+
self.blast_rank = blast_rank
|
31 |
+
self.blast_num_blocks = blast_num_blocks,
|
32 |
+
self.indices = indices
|
33 |
+
self.precompute_matrix = precompute_matrix
|
34 |
+
#self.blast_decomposed_weight_path = blast_decomposed_weight_path
|
35 |
+
super().__init__(**kwargs)
|
36 |
+
|
37 |
+
|
38 |
+
def get_parent(model, mn):
|
39 |
+
parent_name = ".".join(mn.split(".")[:-1])
|
40 |
+
for n, m in model.named_modules():
|
41 |
+
if n == parent_name:
|
42 |
+
return m
|
43 |
+
|
44 |
+
|
45 |
+
def replace_layers_with_blast(
|
46 |
+
model,
|
47 |
+
target_modules,
|
48 |
+
blast_rank,
|
49 |
+
blast_num_blocks,
|
50 |
+
indices,
|
51 |
+
precompute_matrix=False,
|
52 |
+
):
|
53 |
+
for mn, m in model.named_modules():
|
54 |
+
if isinstance(m, torch.nn.Linear):
|
55 |
+
for tmn in target_modules:
|
56 |
+
if tmn in mn:
|
57 |
+
layer_idx = int(mn.split(".")[-3])
|
58 |
+
if layer_idx not in indices:
|
59 |
+
continue
|
60 |
+
if isinstance(blast_rank, dict):
|
61 |
+
for k in blast_rank.keys():
|
62 |
+
if k in mn:
|
63 |
+
rank = blast_rank[k]
|
64 |
+
break
|
65 |
+
elif isinstance(blast_rank, int):
|
66 |
+
rank = blast_rank
|
67 |
+
elif isinstance(blast_rank, float):
|
68 |
+
rank = int(blast_rank * min(m.weight.shape[0], m.weight.shape[1]))
|
69 |
+
else:
|
70 |
+
raise ValueError(f"blast_rank must have either dict, int, or float type, got: {type(blast_rank)}.")
|
71 |
+
|
72 |
+
if isinstance(blast_num_blocks, dict):
|
73 |
+
for k in blast_rank.keys():
|
74 |
+
if k in mn:
|
75 |
+
num_blocks = blast_num_blocks[k]
|
76 |
+
break
|
77 |
+
elif isinstance(blast_num_blocks, int):
|
78 |
+
num_blocks = blast_num_blocks
|
79 |
+
elif isinstance(blast_num_blocks, tuple):
|
80 |
+
num_blocks = blast_num_blocks
|
81 |
+
if len(blast_num_blocks) == 1:
|
82 |
+
num_blocks = num_blocks[0]
|
83 |
+
if isinstance(num_blocks, list):
|
84 |
+
num_blocks = num_blocks[0]
|
85 |
+
else:
|
86 |
+
raise ValueError(f"blast_num_blocks must have either dict, int, or tuple of ints, got: {type(blast_num_blocks)}.")
|
87 |
+
|
88 |
+
# Load Decomposed BLAST Weights
|
89 |
+
new_layer = BlastLinear(
|
90 |
+
in_features=m.weight.shape[1],
|
91 |
+
out_features=m.weight.shape[0],
|
92 |
+
num_blocks=num_blocks,
|
93 |
+
rank=rank,
|
94 |
+
bias=m.bias is not None,
|
95 |
+
device=m.weight.device,
|
96 |
+
dtype=m.weight.dtype,
|
97 |
+
precompute_matrix=precompute_matrix,
|
98 |
+
)
|
99 |
+
|
100 |
+
parent_module = get_parent(model, mn)
|
101 |
+
child_name = mn.split(".")[-1]
|
102 |
+
parent_module.add_module(child_name, new_layer)
|
103 |
+
|
104 |
+
return model
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
class BlastLinear(torch.nn.Module):
|
109 |
+
def __init__(self,
|
110 |
+
in_features: int,
|
111 |
+
out_features: int,
|
112 |
+
num_blocks: Union[int, Union[List, Tuple]],
|
113 |
+
rank=None,
|
114 |
+
bias: bool = True,
|
115 |
+
device=None,
|
116 |
+
dtype=torch.float32,
|
117 |
+
precompute_matrix=False,
|
118 |
+
) -> None:
|
119 |
+
|
120 |
+
super().__init__()
|
121 |
+
self.in_features = in_features
|
122 |
+
self.out_features = out_features
|
123 |
+
if isinstance(num_blocks, int):
|
124 |
+
num_blocks=(num_blocks, num_blocks)
|
125 |
+
if isinstance(num_blocks[0], list):
|
126 |
+
num_blocks[0] = num_blocks[0][0]
|
127 |
+
if isinstance(num_blocks[1], list):
|
128 |
+
num_blocks[1] = num_blocks[1][0]
|
129 |
+
assert len(num_blocks)==2
|
130 |
+
assert in_features % num_blocks[1] == 0 and out_features % num_blocks[0] == 0
|
131 |
+
self.num_blocks = num_blocks
|
132 |
+
self.precompute_matrix = precompute_matrix
|
133 |
+
|
134 |
+
if rank is None:
|
135 |
+
rank = min(in_features, out_features)
|
136 |
+
if isinstance(rank, float):
|
137 |
+
rank = int(rank * min(in_features, out_features))
|
138 |
+
|
139 |
+
self.rank = rank
|
140 |
+
|
141 |
+
|
142 |
+
self.B = nn.Parameter(torch.empty(num_blocks[0], out_features // num_blocks[0], rank, device=device, dtype=dtype))
|
143 |
+
self.C = nn.Parameter(torch.empty(num_blocks[1], rank, in_features // num_blocks[1], device=device, dtype=dtype))
|
144 |
+
self.D = nn.Parameter(torch.empty(num_blocks[0], num_blocks[1], rank, device=device, dtype=dtype))
|
145 |
+
|
146 |
+
|
147 |
+
if bias:
|
148 |
+
self.bias = nn.Parameter(torch.empty(out_features, device=device, dtype=dtype))
|
149 |
+
else:
|
150 |
+
self.register_parameter('bias', None)
|
151 |
+
self.rank_score = 0.
|
152 |
+
|
153 |
+
def get_matrix(self):
|
154 |
+
C = self.C.unsqueeze(0) # 1,b2,r,q
|
155 |
+
D = self.D.unsqueeze(-1) # b1,b2,r,1
|
156 |
+
DC = C*D
|
157 |
+
DC = DC.permute(0,1,3,2).reshape(self.num_blocks[0], self.in_features, self.rank) # b1 n r
|
158 |
+
B = self.B # b1 p r
|
159 |
+
A = torch.bmm(B, DC.transpose(1,2))
|
160 |
+
A = A.view(self.out_features, self.in_features)
|
161 |
+
return A
|
162 |
+
|
163 |
+
#@torch.compile
|
164 |
+
def forward(self, x : torch.Tensor) -> torch.Tensor:
|
165 |
+
|
166 |
+
if self.precompute_matrix:
|
167 |
+
if self.training:
|
168 |
+
self.A = None
|
169 |
+
A = self.get_matrix()
|
170 |
+
else:
|
171 |
+
if not hasattr(self, 'A') or self.A is None:
|
172 |
+
self.A = self.get_matrix()
|
173 |
+
A = self.A
|
174 |
+
out = torch.nn.functional.linear(x, A)
|
175 |
+
|
176 |
+
else:
|
177 |
+
|
178 |
+
x_shape = x.shape
|
179 |
+
x = x.flatten(0,-2)
|
180 |
+
|
181 |
+
x = x.view(-1, self.num_blocks[1], x.shape[-1]//self.num_blocks[1]).transpose(0,1)
|
182 |
+
y = torch.bmm(x, self.C.transpose(1,2)) # (nb, n, rank)
|
183 |
+
|
184 |
+
z = y.unsqueeze(0) * self.D.unsqueeze(2)
|
185 |
+
z = z.sum(1)
|
186 |
+
|
187 |
+
out = torch.bmm(z, self.B.transpose(1,2))
|
188 |
+
out = out.transpose(0,1).reshape(*(x_shape[:-1] + (self.out_features,)))
|
189 |
+
|
190 |
+
|
191 |
+
if self.bias is not None:
|
192 |
+
out += self.bias.to(x.dtype)
|
193 |
+
return out
|
194 |
+
|
195 |
+
def extra_repr(self) -> str:
|
196 |
+
return f'in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}, rank={self.rank}, num_blocks={self.num_blocks}'
|
197 |
+
|
198 |
+
|
199 |
+
class BlastLlamaModel(LlamaModel):
|
200 |
+
config_class = BlastLlamaConfig
|
201 |
+
|
202 |
+
def __init__(self, config: BlastLlamaConfig):
|
203 |
+
super().__init__(config)
|
204 |
+
self.padding_idx = config.pad_token_id
|
205 |
+
self.vocab_size = config.vocab_size
|
206 |
+
|
207 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
208 |
+
self.layers = nn.ModuleList(
|
209 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
210 |
+
)
|
211 |
+
|
212 |
+
logger.info("Replacing Linear Layers to BlastLiner...")
|
213 |
+
replace_layers_with_blast(
|
214 |
+
self.layers,
|
215 |
+
config.target_modules,
|
216 |
+
config.blast_rank,
|
217 |
+
config.blast_num_blocks,
|
218 |
+
config.indices,
|
219 |
+
config.precompute_matrix,
|
220 |
+
#config.blast_decomposed_weight_path,
|
221 |
+
)
|
222 |
+
#config.blast_decomposed_weight_path = None
|
223 |
+
|
224 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
225 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
226 |
+
self.gradient_checkpointing = False
|
227 |
+
|
228 |
+
# Initialize weights and apply final processing
|
229 |
+
self.post_init()
|
230 |
+
|
231 |
+
class BlastModelForCausalLM(LlamaForCausalLM, PyTorchModelHubMixin):
|
232 |
+
config_class = BlastLlamaConfig
|
233 |
+
|
234 |
+
def __init__(self, config):
|
235 |
+
super().__init__(config)
|
236 |
+
self.model = BlastLlamaModel(config)
|
237 |
+
self.vocab_size = config.vocab_size
|
238 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
239 |
+
|
240 |
+
# Initialize weights and apply final processing
|
241 |
+
self.post_init()
|
242 |
+
|
243 |
+
|
244 |
+
|