iarcuschin commited on
Commit
4fd68f3
1 Parent(s): 52adfa8

Update metadata files

Browse files
benchmark_cases_metadata.csv CHANGED
@@ -1,19 +1,19 @@
1
- case_id,url,task_description,max_seq_len,min_seq_len,transformer_cfg_file_url,training_args_file_url,weights_file_url,circuit_file_url,training_args.atol,training_args.lr,training_args.use_single_loss,training_args.iit_weight,training_args.behavior_weight,training_args.strict_weight,training_args.epochs,training_args.act_fn,training_args.clip_grad_norm,training_args.lr_scheduler,transformer_cfg.n_layers,transformer_cfg.d_model,transformer_cfg.n_ctx,transformer_cfg.d_head,transformer_cfg.model_name,transformer_cfg.n_heads,transformer_cfg.d_mlp,transformer_cfg.act_fn,transformer_cfg.d_vocab,transformer_cfg.eps,transformer_cfg.use_attn_result,transformer_cfg.use_attn_scale,transformer_cfg.use_split_qkv_input,transformer_cfg.use_hook_mlp_in,transformer_cfg.use_attn_in,transformer_cfg.use_local_attn,transformer_cfg.original_architecture,transformer_cfg.from_checkpoint,transformer_cfg.tokenizer_name,transformer_cfg.init_mode,transformer_cfg.normalization_type,transformer_cfg.n_devices,transformer_cfg.attention_dir,transformer_cfg.attn_only,transformer_cfg.seed,transformer_cfg.initializer_range,transformer_cfg.init_weights,transformer_cfg.scale_attn_by_inverse_layer_idx,transformer_cfg.positional_embedding_type,transformer_cfg.final_rms,transformer_cfg.d_vocab_out,transformer_cfg.parallel_attn_mlp,transformer_cfg.n_params,transformer_cfg.use_hook_tokens,transformer_cfg.gated_mlp,transformer_cfg.default_prepend_bos,transformer_cfg.dtype,transformer_cfg.tokenizer_prepends_bos,transformer_cfg.post_embedding_ln,transformer_cfg.rotary_base,transformer_cfg.trust_remote_code,transformer_cfg.rotary_adjacent_pairs,training_args.model_pair,training_args.next_token,training_args.non_ioi_thresh,training_args.use_per_token_check,training_args.batch_size,training_args.num_workers,training_args.early_stop,training_args.scheduler_val_metric,training_args.scheduler_mode
2
- 11,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/11,Counts the number of words in a sequence based on their length.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/edges.pkl,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,2,12,10,3,custom,4,48,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1460593486680443,True,False,standard,False,5,False,3456,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
3
- 13,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/13,"Analyzes the trend (increasing, decreasing, constant) of numeric tokens.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/edges.pkl,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,2,20,10,5,custom,4,80,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.1460593486680443,True,False,standard,False,3,False,9600,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
4
- 18,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/18,"Classify each token based on its frequency as 'rare', 'common', or 'frequent'.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/edges.pkl,0.05,0.001,False,1.0,1.0,1.0,2000.0,gelu,0.1,,2,26,10,6,custom,4,104,gelu,7,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.12344267996967354,True,False,standard,False,3,False,15808,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
5
- 19,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/19,Removes consecutive duplicate tokens from a sequence.,15,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/edges.pkl,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,2,32,15,8,custom,4,128,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.15689290811054724,True,False,standard,False,3,False,24576,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
6
- 20,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/20,Detect spam messages based on appearance of spam keywords.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/edges.pkl,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,2,13,10,3,custom,4,52,gelu,14,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.16,True,False,standard,False,2,False,3952,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
7
- 21,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/21,Extract unique tokens from a string,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/edges.pkl,0.05,0.0005,False,1.0,1.0,0.5,2000.0,gelu,0.1,,4,50,10,12,custom,4,200,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.09847319278346618,True,False,standard,False,3,False,118400,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
8
- 26,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/26,Creates a cascading effect by repeating each token in sequence incrementally.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/edges.pkl,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,2,21,10,5,custom,4,84,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.12344267996967354,True,False,standard,False,27,False,10416,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
9
- 29,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/29,Creates abbreviations for each token in the sequence.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/edges.pkl,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,2,13,10,3,custom,4,52,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,3952,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
10
- 3,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/3,Returns the fraction of 'x' in the input up to the i-th position for all i.,5,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/edges.pkl,0.05,0.001,False,1.0,1.0,10.0,2000.0,gelu,0.1,,2,12,5,3,custom,4,48,gelu,6,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.22188007849009167,True,False,standard,False,1,False,3456,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
11
- 33,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/33,Checks if each token's length is odd or even.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/edges.pkl,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,2,4,10,1,custom,4,16,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.17457431218879393,True,False,standard,False,2,False,384,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
12
- 34,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/34,Calculate the ratio of vowels to consonants in each word.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/edges.pkl,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,2,16,10,4,custom,4,64,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.16329931618554522,True,False,standard,False,5,False,6144,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
13
- 35,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/35,Alternates capitalization of each character in words.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/edges.pkl,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,2,9,10,2,custom,4,36,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,1872,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
14
- 36,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/36,"Classifies each token as 'positive', 'negative', or 'neutral' based on emojis.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/edges.pkl,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,2,6,10,1,custom,4,24,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.19402850002906638,True,False,standard,False,3,False,768,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
15
- 37,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/37,Reverses each word in the sequence except for specified exclusions.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/edges.pkl,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,2,12,10,3,custom,4,48,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,3456,False,False,True,torch.float32,False,False,10000,False,False,strict,True,,True,,,True,,
16
- 4,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/4,Return fraction of previous open tokens minus the fraction of close tokens.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,2,20,10,5,custom,4,80,gelu,7,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.17056057308448835,True,False,standard,False,1,False,9600,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
17
- 8,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/8,Fills gaps between tokens with a specified filler.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/edges.pkl,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,2,20,10,5,custom,4,80,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.13333333333333333,True,False,standard,False,8,False,9600,False,False,True,torch.float32,False,False,10000,False,False,,True,,True,,,True,,
18
- ioi,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi,Indirect object identification,16,16,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/edges.pkl,0.05,0.001,False,1.0,1.0,0.4,,,1.0,,6,64,1024,16,gpt2,4,3072,gelu_new,50257,1e-05,False,True,False,False,False,False,GPT2LMHeadModel,False,gpt2,gpt2,LNPre,1,causal,False,,0.02886751345948129,True,False,standard,False,50257,False,2457600,False,False,True,torch.float32,False,False,10000,False,False,,True,0.65,False,256.0,0.0,True,"val/accuracy,val/IIA",max
19
- ioi_next_token,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token,Indirect object identification,16,16,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/edges.pkl,0.05,0.001,False,1.0,1.0,0.4,,,1.0,,6,64,1024,16,gpt2,4,3072,gelu_new,50257,1e-05,False,True,False,False,False,False,GPT2LMHeadModel,False,gpt2,gpt2,LNPre,1,causal,False,,0.02886751345948129,True,False,standard,False,50257,False,2457600,False,False,True,torch.float32,False,False,10000,False,False,,True,0.65,False,256.0,0.0,True,"val/accuracy,val/IIA",max
 
1
+ case_id,url,task_description,max_seq_len,min_seq_len,transformer_cfg_file_url,training_args_file_url,weights_file_url,circuit_file_url,transformer_cfg.n_layers,transformer_cfg.d_model,transformer_cfg.n_ctx,transformer_cfg.d_head,transformer_cfg.model_name,transformer_cfg.n_heads,transformer_cfg.d_mlp,transformer_cfg.act_fn,transformer_cfg.d_vocab,transformer_cfg.eps,transformer_cfg.use_attn_result,transformer_cfg.use_attn_scale,transformer_cfg.use_split_qkv_input,transformer_cfg.use_hook_mlp_in,transformer_cfg.use_attn_in,transformer_cfg.use_local_attn,transformer_cfg.original_architecture,transformer_cfg.from_checkpoint,transformer_cfg.tokenizer_name,transformer_cfg.init_mode,transformer_cfg.normalization_type,transformer_cfg.n_devices,transformer_cfg.attention_dir,transformer_cfg.attn_only,transformer_cfg.seed,transformer_cfg.initializer_range,transformer_cfg.init_weights,transformer_cfg.scale_attn_by_inverse_layer_idx,transformer_cfg.positional_embedding_type,transformer_cfg.final_rms,transformer_cfg.d_vocab_out,transformer_cfg.parallel_attn_mlp,transformer_cfg.n_params,transformer_cfg.use_hook_tokens,transformer_cfg.gated_mlp,transformer_cfg.default_prepend_bos,transformer_cfg.dtype,transformer_cfg.tokenizer_prepends_bos,transformer_cfg.post_embedding_ln,transformer_cfg.rotary_base,transformer_cfg.trust_remote_code,transformer_cfg.rotary_adjacent_pairs,training_args.atol,training_args.lr,training_args.use_single_loss,training_args.iit_weight,training_args.behavior_weight,training_args.strict_weight,training_args.epochs,training_args.act_fn,training_args.clip_grad_norm,training_args.lr_scheduler,training_args.model_pair,training_args.same_size,training_args.seed,training_args.batch_size,training_args.include_mlp,training_args.next_token,training_args.detach_while_caching,training_args.non_ioi_thresh,training_args.use_per_token_check,training_args.num_workers,training_args.early_stop,training_args.scheduler_val_metric,training_args.scheduler_mode,training_args.val_IIA_sampling,training_args.use_all_tokens_for_behavior,training_args.siit_sampling,training_args.optimizer_kwargs.betas
2
+ 11,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/11,Counts the number of words in a sequence based on their length.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/11/edges.pkl,2,12,10,3,custom,4,48,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1460593486680443,True,False,standard,False,5,False,3456,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,,True,,,True,True,True,,True,,True,,,,True,,
3
+ 13,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/13,"Analyzes the trend (increasing, decreasing, constant) of numeric tokens.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/13/edges.pkl,2,20,10,5,custom,4,80,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.1460593486680443,True,False,standard,False,3,False,9600,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,500.0,gelu,1.0,,,True,,,True,True,True,,True,,True,,,,True,,
4
+ 18,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/18,"Classify each token based on its frequency as 'rare', 'common', or 'frequent'.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/18/edges.pkl,2,26,10,6,custom,4,104,gelu,7,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.12344267996967354,True,False,standard,False,3,False,15808,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
5
+ 19,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/19,Removes consecutive duplicate tokens from a sequence.,15,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/19/edges.pkl,2,32,15,8,custom,4,128,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.15689290811054724,True,False,standard,False,3,False,24576,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,,True,,,True,True,True,,True,,True,,,,True,,
6
+ 20,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/20,Detect spam messages based on appearance of spam keywords.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/20/edges.pkl,2,13,10,3,custom,4,52,gelu,14,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.16,True,False,standard,False,2,False,3952,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
7
+ 21,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/21,Extract unique tokens from a string,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/21/edges.pkl,4,50,10,12,custom,4,200,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.09847319278346618,True,False,standard,False,3,False,118400,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.0005,False,1.0,1.0,0.5,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
8
+ 26,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/26,Creates a cascading effect by repeating each token in sequence incrementally.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/26/edges.pkl,2,21,10,5,custom,4,84,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.12344267996967354,True,False,standard,False,27,False,10416,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
9
+ 29,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/29,Creates abbreviations for each token in the sequence.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/29/edges.pkl,2,13,10,3,custom,4,52,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,3952,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.4,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
10
+ 3,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/3,Returns the fraction of 'x' in the input up to the i-th position for all i.,5,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/edges.pkl,2,12,5,3,custom,4,48,gelu,6,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.22188007849009167,True,False,standard,False,1,False,3456,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,10.0,2000.0,gelu,0.1,,strict,False,,,True,True,True,,True,,True,,,,True,,
11
+ 33,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/33,Checks if each token's length is odd or even.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/33/edges.pkl,2,4,10,1,custom,4,16,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.17457431218879393,True,False,standard,False,2,False,384,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,,True,,,True,True,True,,True,,True,,,,True,,
12
+ 34,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/34,Calculate the ratio of vowels to consonants in each word.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/34/edges.pkl,2,16,10,4,custom,4,64,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.16329931618554522,True,False,standard,False,5,False,6144,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
13
+ 35,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/35,Alternates capitalization of each character in words.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/35/edges.pkl,2,9,10,2,custom,4,36,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,1872,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
14
+ 36,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/36,"Classifies each token as 'positive', 'negative', or 'neutral' based on emojis.",10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/36/edges.pkl,2,6,10,1,custom,4,24,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.19402850002906638,True,False,standard,False,3,False,768,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
15
+ 37,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/37,Reverses each word in the sequence except for specified exclusions.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/37/edges.pkl,2,12,10,3,custom,4,48,gelu,10,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.1539600717839002,True,False,standard,False,8,False,3456,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,1.0,2000.0,gelu,0.1,,strict,True,,,True,True,True,,True,,True,,,,True,,
16
+ 4,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/4,Return fraction of previous open tokens minus the fraction of close tokens.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl,2,20,10,5,custom,4,80,gelu,7,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,causal,False,0.0,0.17056057308448835,True,False,standard,False,1,False,9600,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,2000.0,gelu,0.1,,,True,,,True,True,True,,True,,True,,,,True,,
17
+ 7,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/7,Returns the number of times each token occurs in the input.,10,4,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/edges.pkl,2,17,10,4,custom,4,68,gelu,5,1e-05,True,True,True,True,False,False,,False,,gpt2,,1,bidirectional,False,0.0,0.15689290811054724,True,False,standard,False,10,False,6800,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.01,False,1.0,1.0,0.5,2000.0,gelu,0.1,,strict,False,1234.0,256.0,False,False,True,,True,,True,,,,True,,
18
+ ioi,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi,Indirect Object Identification (IOI) task.,16,16,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/edges.pkl,6,64,1024,16,gpt2,4,3072,gelu_new,50257,1e-05,False,True,False,False,False,False,GPT2LMHeadModel,False,gpt2,gpt2,LNPre,1,causal,False,,0.02886751345948129,False,False,standard,False,50257,False,84934656,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,,,1.0,,,True,0.0,512.0,True,False,True,0.65,False,0.0,True,"val/accuracy,val/IIA",max,random,False,individual,"0.9,0.9"
19
+ ioi_next_token,https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token,"Indirect Object Identification (IOI) task, trained using next token prediction.",16,16,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/ll_model_cfg.pkl,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/meta.json,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/ll_model.pth,https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi_next_token/edges.pkl,6,64,1024,16,gpt2,4,3072,gelu_new,50257,1e-05,False,True,False,False,False,False,GPT2LMHeadModel,False,gpt2,gpt2,LNPre,1,causal,False,,0.02886751345948129,True,False,standard,False,50257,False,2457600,False,False,True,torch.float32,False,False,10000,False,False,0.05,0.001,False,1.0,1.0,0.4,,,1.0,,,True,,256.0,True,True,True,0.65,False,0.0,True,"val/accuracy,val/IIA",max,,True,,
benchmark_cases_metadata.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:568194933b940c4c03457b1c64a8cb074943dfd075ff83f06e84a6376e3a8dcf
3
- size 58286
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9901890c05e11095ebb3dbd5710284edd09c37b40422eec02a126231f62f63d1
3
+ size 64382
benchmark_metadata.json CHANGED
@@ -891,7 +891,7 @@
891
  "transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl",
892
  "training_args": {
893
  "atol": 0.05,
894
- "lr": 0.001,
895
  "use_single_loss": false,
896
  "iit_weight": 1.0,
897
  "behavior_weight": 1.0,
@@ -899,7 +899,9 @@
899
  "epochs": 2000,
900
  "act_fn": "gelu",
901
  "clip_grad_norm": 0.1,
902
- "lr_scheduler": ""
 
 
903
  },
904
  "training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json",
905
  "weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth",
@@ -1514,49 +1516,44 @@
1514
  "circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl"
1515
  },
1516
  {
1517
- "case_id": "8",
1518
- "url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/8",
1519
- "task_description": "Fills gaps between tokens with a specified filler.",
1520
  "vocab": [
1521
- "J",
1522
- "LB",
1523
- "TPSI",
1524
- "V",
1525
  "b",
1526
- "no",
1527
- "oCLrZaW",
1528
- "poiVg"
1529
  ],
1530
  "max_seq_len": 10,
1531
  "min_seq_len": 4,
1532
  "files": [
1533
  {
1534
  "file_name": "edges.pkl",
1535
- "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/edges.pkl"
1536
  },
1537
  {
1538
  "file_name": "ll_model.pth",
1539
- "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/ll_model.pth"
1540
  },
1541
  {
1542
  "file_name": "ll_model_cfg.pkl",
1543
- "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/ll_model_cfg.pkl"
1544
  },
1545
  {
1546
  "file_name": "meta.json",
1547
- "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/meta.json"
1548
  }
1549
  ],
1550
  "transformer_cfg": {
1551
  "n_layers": 2,
1552
- "d_model": 20,
1553
  "n_ctx": 10,
1554
- "d_head": 5,
1555
  "model_name": "custom",
1556
  "n_heads": 4,
1557
- "d_mlp": 80,
1558
  "act_fn": "gelu",
1559
- "d_vocab": 10,
1560
  "eps": 1e-05,
1561
  "use_attn_result": true,
1562
  "use_attn_scale": true,
@@ -1575,18 +1572,18 @@
1575
  "init_mode": "gpt2",
1576
  "normalization_type": null,
1577
  "n_devices": 1,
1578
- "attention_dir": "causal",
1579
  "attn_only": false,
1580
  "seed": 0,
1581
- "initializer_range": 0.13333333333333333,
1582
  "init_weights": true,
1583
  "scale_attn_by_inverse_layer_idx": false,
1584
  "positional_embedding_type": "standard",
1585
  "final_rms": false,
1586
- "d_vocab_out": 8,
1587
  "parallel_attn_mlp": false,
1588
  "rotary_dim": null,
1589
- "n_params": 9600,
1590
  "use_hook_tokens": false,
1591
  "gated_mlp": false,
1592
  "default_prepend_bos": true,
@@ -1598,27 +1595,34 @@
1598
  "trust_remote_code": false,
1599
  "rotary_adjacent_pairs": false
1600
  },
1601
- "transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/ll_model_cfg.pkl",
1602
  "training_args": {
1603
  "atol": 0.05,
1604
  "lr": 0.01,
1605
  "use_single_loss": false,
1606
  "iit_weight": 1.0,
1607
  "behavior_weight": 1.0,
1608
- "strict_weight": 0.4,
1609
- "epochs": 500,
1610
  "act_fn": "gelu",
1611
- "clip_grad_norm": 1.0,
1612
- "lr_scheduler": ""
 
 
 
 
 
 
 
1613
  },
1614
- "training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/meta.json",
1615
- "weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/ll_model.pth",
1616
- "circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/8/edges.pkl"
1617
  },
1618
  {
1619
  "case_id": "ioi",
1620
  "url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi",
1621
- "task_description": "Indirect object identification",
1622
  "max_seq_len": 16,
1623
  "min_seq_len": 16,
1624
  "files": [
@@ -1671,14 +1675,14 @@
1671
  "attn_only": false,
1672
  "seed": null,
1673
  "initializer_range": 0.02886751345948129,
1674
- "init_weights": true,
1675
  "scale_attn_by_inverse_layer_idx": false,
1676
  "positional_embedding_type": "standard",
1677
  "final_rms": false,
1678
  "d_vocab_out": 50257,
1679
  "parallel_attn_mlp": false,
1680
  "rotary_dim": null,
1681
- "n_params": 2457600,
1682
  "use_hook_tokens": false,
1683
  "gated_mlp": false,
1684
  "default_prepend_bos": true,
@@ -1692,11 +1696,10 @@
1692
  },
1693
  "transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl",
1694
  "training_args": {
1695
- "next_token": true,
1696
  "non_ioi_thresh": 0.65,
1697
  "use_per_token_check": false,
1698
- "batch_size": 256,
1699
- "lr": 0.001,
1700
  "num_workers": 0,
1701
  "early_stop": true,
1702
  "lr_scheduler": null,
@@ -1705,12 +1708,25 @@
1705
  "val/IIA"
1706
  ],
1707
  "scheduler_mode": "max",
 
1708
  "clip_grad_norm": 1.0,
 
 
 
 
 
 
 
 
 
1709
  "atol": 0.05,
1710
  "use_single_loss": false,
1711
  "iit_weight": 1.0,
1712
  "behavior_weight": 1.0,
1713
- "strict_weight": 0.4
 
 
 
1714
  },
1715
  "training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json",
1716
  "weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth",
@@ -1719,7 +1735,7 @@
1719
  {
1720
  "case_id": "ioi_next_token",
1721
  "url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token",
1722
- "task_description": "Indirect object identification",
1723
  "max_seq_len": 16,
1724
  "min_seq_len": 16,
1725
  "files": [
 
891
  "transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model_cfg.pkl",
892
  "training_args": {
893
  "atol": 0.05,
894
+ "lr": 0.01,
895
  "use_single_loss": false,
896
  "iit_weight": 1.0,
897
  "behavior_weight": 1.0,
 
899
  "epochs": 2000,
900
  "act_fn": "gelu",
901
  "clip_grad_norm": 0.1,
902
+ "lr_scheduler": "",
903
+ "model_pair": "strict",
904
+ "same_size": false
905
  },
906
  "training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/meta.json",
907
  "weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/3/ll_model.pth",
 
1516
  "circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/4/edges.pkl"
1517
  },
1518
  {
1519
+ "case_id": "7",
1520
+ "url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/7",
1521
+ "task_description": "Returns the number of times each token occurs in the input.",
1522
  "vocab": [
1523
+ "a",
 
 
 
1524
  "b",
1525
+ "c"
 
 
1526
  ],
1527
  "max_seq_len": 10,
1528
  "min_seq_len": 4,
1529
  "files": [
1530
  {
1531
  "file_name": "edges.pkl",
1532
+ "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/edges.pkl"
1533
  },
1534
  {
1535
  "file_name": "ll_model.pth",
1536
+ "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model.pth"
1537
  },
1538
  {
1539
  "file_name": "ll_model_cfg.pkl",
1540
+ "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model_cfg.pkl"
1541
  },
1542
  {
1543
  "file_name": "meta.json",
1544
+ "url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/meta.json"
1545
  }
1546
  ],
1547
  "transformer_cfg": {
1548
  "n_layers": 2,
1549
+ "d_model": 17,
1550
  "n_ctx": 10,
1551
+ "d_head": 4,
1552
  "model_name": "custom",
1553
  "n_heads": 4,
1554
+ "d_mlp": 68,
1555
  "act_fn": "gelu",
1556
+ "d_vocab": 5,
1557
  "eps": 1e-05,
1558
  "use_attn_result": true,
1559
  "use_attn_scale": true,
 
1572
  "init_mode": "gpt2",
1573
  "normalization_type": null,
1574
  "n_devices": 1,
1575
+ "attention_dir": "bidirectional",
1576
  "attn_only": false,
1577
  "seed": 0,
1578
+ "initializer_range": 0.15689290811054724,
1579
  "init_weights": true,
1580
  "scale_attn_by_inverse_layer_idx": false,
1581
  "positional_embedding_type": "standard",
1582
  "final_rms": false,
1583
+ "d_vocab_out": 10,
1584
  "parallel_attn_mlp": false,
1585
  "rotary_dim": null,
1586
+ "n_params": 6800,
1587
  "use_hook_tokens": false,
1588
  "gated_mlp": false,
1589
  "default_prepend_bos": true,
 
1595
  "trust_remote_code": false,
1596
  "rotary_adjacent_pairs": false
1597
  },
1598
+ "transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model_cfg.pkl",
1599
  "training_args": {
1600
  "atol": 0.05,
1601
  "lr": 0.01,
1602
  "use_single_loss": false,
1603
  "iit_weight": 1.0,
1604
  "behavior_weight": 1.0,
1605
+ "strict_weight": 0.5,
1606
+ "epochs": 2000,
1607
  "act_fn": "gelu",
1608
+ "clip_grad_norm": 0.1,
1609
+ "lr_scheduler": "",
1610
+ "model_pair": "strict",
1611
+ "same_size": false,
1612
+ "seed": 1234,
1613
+ "batch_size": 256,
1614
+ "include_mlp": false,
1615
+ "next_token": false,
1616
+ "detach_while_caching": true
1617
  },
1618
+ "training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/meta.json",
1619
+ "weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/ll_model.pth",
1620
+ "circuit_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/7/edges.pkl"
1621
  },
1622
  {
1623
  "case_id": "ioi",
1624
  "url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi",
1625
+ "task_description": "Indirect Object Identification (IOI) task.",
1626
  "max_seq_len": 16,
1627
  "min_seq_len": 16,
1628
  "files": [
 
1675
  "attn_only": false,
1676
  "seed": null,
1677
  "initializer_range": 0.02886751345948129,
1678
+ "init_weights": false,
1679
  "scale_attn_by_inverse_layer_idx": false,
1680
  "positional_embedding_type": "standard",
1681
  "final_rms": false,
1682
  "d_vocab_out": 50257,
1683
  "parallel_attn_mlp": false,
1684
  "rotary_dim": null,
1685
+ "n_params": 84934656,
1686
  "use_hook_tokens": false,
1687
  "gated_mlp": false,
1688
  "default_prepend_bos": true,
 
1696
  },
1697
  "transformer_cfg_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model_cfg.pkl",
1698
  "training_args": {
1699
+ "next_token": false,
1700
  "non_ioi_thresh": 0.65,
1701
  "use_per_token_check": false,
1702
+ "batch_size": 512,
 
1703
  "num_workers": 0,
1704
  "early_stop": true,
1705
  "lr_scheduler": null,
 
1708
  "val/IIA"
1709
  ],
1710
  "scheduler_mode": "max",
1711
+ "scheduler_kwargs": {},
1712
  "clip_grad_norm": 1.0,
1713
+ "seed": 0,
1714
+ "lr": 0.001,
1715
+ "detach_while_caching": true,
1716
+ "optimizer_kwargs": {
1717
+ "betas": [
1718
+ 0.9,
1719
+ 0.9
1720
+ ]
1721
+ },
1722
  "atol": 0.05,
1723
  "use_single_loss": false,
1724
  "iit_weight": 1.0,
1725
  "behavior_weight": 1.0,
1726
+ "val_IIA_sampling": "random",
1727
+ "use_all_tokens_for_behavior": false,
1728
+ "strict_weight": 0.4,
1729
+ "siit_sampling": "individual"
1730
  },
1731
  "training_args_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/meta.json",
1732
  "weights_file_url": "https://huggingface.co/cybershiptrooper/InterpBench/blob/main/ioi/ll_model.pth",
 
1735
  {
1736
  "case_id": "ioi_next_token",
1737
  "url": "https://huggingface.co/cybershiptrooper/InterpBench/tree/main/ioi_next_token",
1738
+ "task_description": "Indirect Object Identification (IOI) task, trained using next token prediction.",
1739
  "max_seq_len": 16,
1740
  "min_seq_len": 16,
1741
  "files": [
benchmark_metadata_croissant.json CHANGED
@@ -257,156 +257,6 @@
257
  }
258
  }
259
  },
260
- {
261
- "@type": "cr:Field",
262
- "@id": "training_args.atol",
263
- "name": "training_args.atol",
264
- "description": "Column 'training_args.atol' from the parquet file describing all the cases in the benchmark.",
265
- "dataType": "sc:Float",
266
- "source": {
267
- "fileSet": {
268
- "@id": "benchmark-cases-parquet"
269
- },
270
- "extract": {
271
- "column": "training_args.atol"
272
- }
273
- }
274
- },
275
- {
276
- "@type": "cr:Field",
277
- "@id": "training_args.lr",
278
- "name": "training_args.lr",
279
- "description": "Column 'training_args.lr' from the parquet file describing all the cases in the benchmark.",
280
- "dataType": "sc:Float",
281
- "source": {
282
- "fileSet": {
283
- "@id": "benchmark-cases-parquet"
284
- },
285
- "extract": {
286
- "column": "training_args.lr"
287
- }
288
- }
289
- },
290
- {
291
- "@type": "cr:Field",
292
- "@id": "training_args.use_single_loss",
293
- "name": "training_args.use_single_loss",
294
- "description": "Column 'training_args.use_single_loss' from the parquet file describing all the cases in the benchmark.",
295
- "dataType": "sc:Boolean",
296
- "source": {
297
- "fileSet": {
298
- "@id": "benchmark-cases-parquet"
299
- },
300
- "extract": {
301
- "column": "training_args.use_single_loss"
302
- }
303
- }
304
- },
305
- {
306
- "@type": "cr:Field",
307
- "@id": "training_args.iit_weight",
308
- "name": "training_args.iit_weight",
309
- "description": "Column 'training_args.iit_weight' from the parquet file describing all the cases in the benchmark.",
310
- "dataType": "sc:Float",
311
- "source": {
312
- "fileSet": {
313
- "@id": "benchmark-cases-parquet"
314
- },
315
- "extract": {
316
- "column": "training_args.iit_weight"
317
- }
318
- }
319
- },
320
- {
321
- "@type": "cr:Field",
322
- "@id": "training_args.behavior_weight",
323
- "name": "training_args.behavior_weight",
324
- "description": "Column 'training_args.behavior_weight' from the parquet file describing all the cases in the benchmark.",
325
- "dataType": "sc:Float",
326
- "source": {
327
- "fileSet": {
328
- "@id": "benchmark-cases-parquet"
329
- },
330
- "extract": {
331
- "column": "training_args.behavior_weight"
332
- }
333
- }
334
- },
335
- {
336
- "@type": "cr:Field",
337
- "@id": "training_args.strict_weight",
338
- "name": "training_args.strict_weight",
339
- "description": "Column 'training_args.strict_weight' from the parquet file describing all the cases in the benchmark.",
340
- "dataType": "sc:Float",
341
- "source": {
342
- "fileSet": {
343
- "@id": "benchmark-cases-parquet"
344
- },
345
- "extract": {
346
- "column": "training_args.strict_weight"
347
- }
348
- }
349
- },
350
- {
351
- "@type": "cr:Field",
352
- "@id": "training_args.epochs",
353
- "name": "training_args.epochs",
354
- "description": "Column 'training_args.epochs' from the parquet file describing all the cases in the benchmark.",
355
- "dataType": "sc:Float",
356
- "source": {
357
- "fileSet": {
358
- "@id": "benchmark-cases-parquet"
359
- },
360
- "extract": {
361
- "column": "training_args.epochs"
362
- }
363
- }
364
- },
365
- {
366
- "@type": "cr:Field",
367
- "@id": "training_args.act_fn",
368
- "name": "training_args.act_fn",
369
- "description": "Column 'training_args.act_fn' from the parquet file describing all the cases in the benchmark.",
370
- "dataType": "sc:Text",
371
- "source": {
372
- "fileSet": {
373
- "@id": "benchmark-cases-parquet"
374
- },
375
- "extract": {
376
- "column": "training_args.act_fn"
377
- }
378
- }
379
- },
380
- {
381
- "@type": "cr:Field",
382
- "@id": "training_args.clip_grad_norm",
383
- "name": "training_args.clip_grad_norm",
384
- "description": "Column 'training_args.clip_grad_norm' from the parquet file describing all the cases in the benchmark.",
385
- "dataType": "sc:Float",
386
- "source": {
387
- "fileSet": {
388
- "@id": "benchmark-cases-parquet"
389
- },
390
- "extract": {
391
- "column": "training_args.clip_grad_norm"
392
- }
393
- }
394
- },
395
- {
396
- "@type": "cr:Field",
397
- "@id": "training_args.lr_scheduler",
398
- "name": "training_args.lr_scheduler",
399
- "description": "Column 'training_args.lr_scheduler' from the parquet file describing all the cases in the benchmark.",
400
- "dataType": "sc:Text",
401
- "source": {
402
- "fileSet": {
403
- "@id": "benchmark-cases-parquet"
404
- },
405
- "extract": {
406
- "column": "training_args.lr_scheduler"
407
- }
408
- }
409
- },
410
  {
411
  "@type": "cr:Field",
412
  "@id": "transformer_cfg.n_layers",
@@ -1037,6 +887,156 @@
1037
  }
1038
  }
1039
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
  {
1041
  "@type": "cr:Field",
1042
  "@id": "training_args.model_pair",
@@ -1052,6 +1052,66 @@
1052
  }
1053
  }
1054
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
  {
1056
  "@type": "cr:Field",
1057
  "@id": "training_args.next_token",
@@ -1069,46 +1129,46 @@
1069
  },
1070
  {
1071
  "@type": "cr:Field",
1072
- "@id": "training_args.non_ioi_thresh",
1073
- "name": "training_args.non_ioi_thresh",
1074
- "description": "Column 'training_args.non_ioi_thresh' from the parquet file describing all the cases in the benchmark.",
1075
- "dataType": "sc:Float",
1076
  "source": {
1077
  "fileSet": {
1078
  "@id": "benchmark-cases-parquet"
1079
  },
1080
  "extract": {
1081
- "column": "training_args.non_ioi_thresh"
1082
  }
1083
  }
1084
  },
1085
  {
1086
  "@type": "cr:Field",
1087
- "@id": "training_args.use_per_token_check",
1088
- "name": "training_args.use_per_token_check",
1089
- "description": "Column 'training_args.use_per_token_check' from the parquet file describing all the cases in the benchmark.",
1090
- "dataType": "sc:Boolean",
1091
  "source": {
1092
  "fileSet": {
1093
  "@id": "benchmark-cases-parquet"
1094
  },
1095
  "extract": {
1096
- "column": "training_args.use_per_token_check"
1097
  }
1098
  }
1099
  },
1100
  {
1101
  "@type": "cr:Field",
1102
- "@id": "training_args.batch_size",
1103
- "name": "training_args.batch_size",
1104
- "description": "Column 'training_args.batch_size' from the parquet file describing all the cases in the benchmark.",
1105
- "dataType": "sc:Float",
1106
  "source": {
1107
  "fileSet": {
1108
  "@id": "benchmark-cases-parquet"
1109
  },
1110
  "extract": {
1111
- "column": "training_args.batch_size"
1112
  }
1113
  }
1114
  },
@@ -1171,6 +1231,66 @@
1171
  "column": "training_args.scheduler_mode"
1172
  }
1173
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174
  }
1175
  ]
1176
  }
 
257
  }
258
  }
259
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
  {
261
  "@type": "cr:Field",
262
  "@id": "transformer_cfg.n_layers",
 
887
  }
888
  }
889
  },
890
+ {
891
+ "@type": "cr:Field",
892
+ "@id": "training_args.atol",
893
+ "name": "training_args.atol",
894
+ "description": "Column 'training_args.atol' from the parquet file describing all the cases in the benchmark.",
895
+ "dataType": "sc:Float",
896
+ "source": {
897
+ "fileSet": {
898
+ "@id": "benchmark-cases-parquet"
899
+ },
900
+ "extract": {
901
+ "column": "training_args.atol"
902
+ }
903
+ }
904
+ },
905
+ {
906
+ "@type": "cr:Field",
907
+ "@id": "training_args.lr",
908
+ "name": "training_args.lr",
909
+ "description": "Column 'training_args.lr' from the parquet file describing all the cases in the benchmark.",
910
+ "dataType": "sc:Float",
911
+ "source": {
912
+ "fileSet": {
913
+ "@id": "benchmark-cases-parquet"
914
+ },
915
+ "extract": {
916
+ "column": "training_args.lr"
917
+ }
918
+ }
919
+ },
920
+ {
921
+ "@type": "cr:Field",
922
+ "@id": "training_args.use_single_loss",
923
+ "name": "training_args.use_single_loss",
924
+ "description": "Column 'training_args.use_single_loss' from the parquet file describing all the cases in the benchmark.",
925
+ "dataType": "sc:Boolean",
926
+ "source": {
927
+ "fileSet": {
928
+ "@id": "benchmark-cases-parquet"
929
+ },
930
+ "extract": {
931
+ "column": "training_args.use_single_loss"
932
+ }
933
+ }
934
+ },
935
+ {
936
+ "@type": "cr:Field",
937
+ "@id": "training_args.iit_weight",
938
+ "name": "training_args.iit_weight",
939
+ "description": "Column 'training_args.iit_weight' from the parquet file describing all the cases in the benchmark.",
940
+ "dataType": "sc:Float",
941
+ "source": {
942
+ "fileSet": {
943
+ "@id": "benchmark-cases-parquet"
944
+ },
945
+ "extract": {
946
+ "column": "training_args.iit_weight"
947
+ }
948
+ }
949
+ },
950
+ {
951
+ "@type": "cr:Field",
952
+ "@id": "training_args.behavior_weight",
953
+ "name": "training_args.behavior_weight",
954
+ "description": "Column 'training_args.behavior_weight' from the parquet file describing all the cases in the benchmark.",
955
+ "dataType": "sc:Float",
956
+ "source": {
957
+ "fileSet": {
958
+ "@id": "benchmark-cases-parquet"
959
+ },
960
+ "extract": {
961
+ "column": "training_args.behavior_weight"
962
+ }
963
+ }
964
+ },
965
+ {
966
+ "@type": "cr:Field",
967
+ "@id": "training_args.strict_weight",
968
+ "name": "training_args.strict_weight",
969
+ "description": "Column 'training_args.strict_weight' from the parquet file describing all the cases in the benchmark.",
970
+ "dataType": "sc:Float",
971
+ "source": {
972
+ "fileSet": {
973
+ "@id": "benchmark-cases-parquet"
974
+ },
975
+ "extract": {
976
+ "column": "training_args.strict_weight"
977
+ }
978
+ }
979
+ },
980
+ {
981
+ "@type": "cr:Field",
982
+ "@id": "training_args.epochs",
983
+ "name": "training_args.epochs",
984
+ "description": "Column 'training_args.epochs' from the parquet file describing all the cases in the benchmark.",
985
+ "dataType": "sc:Float",
986
+ "source": {
987
+ "fileSet": {
988
+ "@id": "benchmark-cases-parquet"
989
+ },
990
+ "extract": {
991
+ "column": "training_args.epochs"
992
+ }
993
+ }
994
+ },
995
+ {
996
+ "@type": "cr:Field",
997
+ "@id": "training_args.act_fn",
998
+ "name": "training_args.act_fn",
999
+ "description": "Column 'training_args.act_fn' from the parquet file describing all the cases in the benchmark.",
1000
+ "dataType": "sc:Text",
1001
+ "source": {
1002
+ "fileSet": {
1003
+ "@id": "benchmark-cases-parquet"
1004
+ },
1005
+ "extract": {
1006
+ "column": "training_args.act_fn"
1007
+ }
1008
+ }
1009
+ },
1010
+ {
1011
+ "@type": "cr:Field",
1012
+ "@id": "training_args.clip_grad_norm",
1013
+ "name": "training_args.clip_grad_norm",
1014
+ "description": "Column 'training_args.clip_grad_norm' from the parquet file describing all the cases in the benchmark.",
1015
+ "dataType": "sc:Float",
1016
+ "source": {
1017
+ "fileSet": {
1018
+ "@id": "benchmark-cases-parquet"
1019
+ },
1020
+ "extract": {
1021
+ "column": "training_args.clip_grad_norm"
1022
+ }
1023
+ }
1024
+ },
1025
+ {
1026
+ "@type": "cr:Field",
1027
+ "@id": "training_args.lr_scheduler",
1028
+ "name": "training_args.lr_scheduler",
1029
+ "description": "Column 'training_args.lr_scheduler' from the parquet file describing all the cases in the benchmark.",
1030
+ "dataType": "sc:Text",
1031
+ "source": {
1032
+ "fileSet": {
1033
+ "@id": "benchmark-cases-parquet"
1034
+ },
1035
+ "extract": {
1036
+ "column": "training_args.lr_scheduler"
1037
+ }
1038
+ }
1039
+ },
1040
  {
1041
  "@type": "cr:Field",
1042
  "@id": "training_args.model_pair",
 
1052
  }
1053
  }
1054
  },
1055
+ {
1056
+ "@type": "cr:Field",
1057
+ "@id": "training_args.same_size",
1058
+ "name": "training_args.same_size",
1059
+ "description": "Column 'training_args.same_size' from the parquet file describing all the cases in the benchmark.",
1060
+ "dataType": "sc:Boolean",
1061
+ "source": {
1062
+ "fileSet": {
1063
+ "@id": "benchmark-cases-parquet"
1064
+ },
1065
+ "extract": {
1066
+ "column": "training_args.same_size"
1067
+ }
1068
+ }
1069
+ },
1070
+ {
1071
+ "@type": "cr:Field",
1072
+ "@id": "training_args.seed",
1073
+ "name": "training_args.seed",
1074
+ "description": "Column 'training_args.seed' from the parquet file describing all the cases in the benchmark.",
1075
+ "dataType": "sc:Float",
1076
+ "source": {
1077
+ "fileSet": {
1078
+ "@id": "benchmark-cases-parquet"
1079
+ },
1080
+ "extract": {
1081
+ "column": "training_args.seed"
1082
+ }
1083
+ }
1084
+ },
1085
+ {
1086
+ "@type": "cr:Field",
1087
+ "@id": "training_args.batch_size",
1088
+ "name": "training_args.batch_size",
1089
+ "description": "Column 'training_args.batch_size' from the parquet file describing all the cases in the benchmark.",
1090
+ "dataType": "sc:Float",
1091
+ "source": {
1092
+ "fileSet": {
1093
+ "@id": "benchmark-cases-parquet"
1094
+ },
1095
+ "extract": {
1096
+ "column": "training_args.batch_size"
1097
+ }
1098
+ }
1099
+ },
1100
+ {
1101
+ "@type": "cr:Field",
1102
+ "@id": "training_args.include_mlp",
1103
+ "name": "training_args.include_mlp",
1104
+ "description": "Column 'training_args.include_mlp' from the parquet file describing all the cases in the benchmark.",
1105
+ "dataType": "sc:Boolean",
1106
+ "source": {
1107
+ "fileSet": {
1108
+ "@id": "benchmark-cases-parquet"
1109
+ },
1110
+ "extract": {
1111
+ "column": "training_args.include_mlp"
1112
+ }
1113
+ }
1114
+ },
1115
  {
1116
  "@type": "cr:Field",
1117
  "@id": "training_args.next_token",
 
1129
  },
1130
  {
1131
  "@type": "cr:Field",
1132
+ "@id": "training_args.detach_while_caching",
1133
+ "name": "training_args.detach_while_caching",
1134
+ "description": "Column 'training_args.detach_while_caching' from the parquet file describing all the cases in the benchmark.",
1135
+ "dataType": "sc:Boolean",
1136
  "source": {
1137
  "fileSet": {
1138
  "@id": "benchmark-cases-parquet"
1139
  },
1140
  "extract": {
1141
+ "column": "training_args.detach_while_caching"
1142
  }
1143
  }
1144
  },
1145
  {
1146
  "@type": "cr:Field",
1147
+ "@id": "training_args.non_ioi_thresh",
1148
+ "name": "training_args.non_ioi_thresh",
1149
+ "description": "Column 'training_args.non_ioi_thresh' from the parquet file describing all the cases in the benchmark.",
1150
+ "dataType": "sc:Float",
1151
  "source": {
1152
  "fileSet": {
1153
  "@id": "benchmark-cases-parquet"
1154
  },
1155
  "extract": {
1156
+ "column": "training_args.non_ioi_thresh"
1157
  }
1158
  }
1159
  },
1160
  {
1161
  "@type": "cr:Field",
1162
+ "@id": "training_args.use_per_token_check",
1163
+ "name": "training_args.use_per_token_check",
1164
+ "description": "Column 'training_args.use_per_token_check' from the parquet file describing all the cases in the benchmark.",
1165
+ "dataType": "sc:Boolean",
1166
  "source": {
1167
  "fileSet": {
1168
  "@id": "benchmark-cases-parquet"
1169
  },
1170
  "extract": {
1171
+ "column": "training_args.use_per_token_check"
1172
  }
1173
  }
1174
  },
 
1231
  "column": "training_args.scheduler_mode"
1232
  }
1233
  }
1234
+ },
1235
+ {
1236
+ "@type": "cr:Field",
1237
+ "@id": "training_args.val_IIA_sampling",
1238
+ "name": "training_args.val_IIA_sampling",
1239
+ "description": "Column 'training_args.val_IIA_sampling' from the parquet file describing all the cases in the benchmark.",
1240
+ "dataType": "sc:Text",
1241
+ "source": {
1242
+ "fileSet": {
1243
+ "@id": "benchmark-cases-parquet"
1244
+ },
1245
+ "extract": {
1246
+ "column": "training_args.val_IIA_sampling"
1247
+ }
1248
+ }
1249
+ },
1250
+ {
1251
+ "@type": "cr:Field",
1252
+ "@id": "training_args.use_all_tokens_for_behavior",
1253
+ "name": "training_args.use_all_tokens_for_behavior",
1254
+ "description": "Column 'training_args.use_all_tokens_for_behavior' from the parquet file describing all the cases in the benchmark.",
1255
+ "dataType": "sc:Boolean",
1256
+ "source": {
1257
+ "fileSet": {
1258
+ "@id": "benchmark-cases-parquet"
1259
+ },
1260
+ "extract": {
1261
+ "column": "training_args.use_all_tokens_for_behavior"
1262
+ }
1263
+ }
1264
+ },
1265
+ {
1266
+ "@type": "cr:Field",
1267
+ "@id": "training_args.siit_sampling",
1268
+ "name": "training_args.siit_sampling",
1269
+ "description": "Column 'training_args.siit_sampling' from the parquet file describing all the cases in the benchmark.",
1270
+ "dataType": "sc:Text",
1271
+ "source": {
1272
+ "fileSet": {
1273
+ "@id": "benchmark-cases-parquet"
1274
+ },
1275
+ "extract": {
1276
+ "column": "training_args.siit_sampling"
1277
+ }
1278
+ }
1279
+ },
1280
+ {
1281
+ "@type": "cr:Field",
1282
+ "@id": "training_args.optimizer_kwargs.betas",
1283
+ "name": "training_args.optimizer_kwargs.betas",
1284
+ "description": "Column 'training_args.optimizer_kwargs.betas' from the parquet file describing all the cases in the benchmark.",
1285
+ "dataType": "sc:Text",
1286
+ "source": {
1287
+ "fileSet": {
1288
+ "@id": "benchmark-cases-parquet"
1289
+ },
1290
+ "extract": {
1291
+ "column": "training_args.optimizer_kwargs.betas"
1292
+ }
1293
+ }
1294
  }
1295
  ]
1296
  }