File size: 37,429 Bytes
a2fedce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
from pathlib import Path
import types
from typing import Optional, Tuple, Union, List, Dict, Any
import gc
import openvino as ov
from openvino.runtime import opset13
import nncf
import numpy as np
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoConfig
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, VisionRotaryEmbedding
from transformers.cache_utils import DynamicCache
from transformers.modeling_outputs import ModelOutput
from transformers.generation import GenerationConfig, GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast
model_ids = ["Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-VL-7B-Instruct"]
def model_selector(default=model_ids[0]):
import ipywidgets as widgets
model_checkpoint = widgets.Dropdown(
options=model_ids,
default=default,
description="Model:",
)
return model_checkpoint
def model_has_state(ov_model: ov.Model):
return len(ov_model.get_sinks()) > 0
def model_has_input_output_name(ov_model: ov.Model, name: str):
"""
Helper function for checking that model has specified input or output name
Parameters:
ov_model (ov.Model):
name (str):
name of input or output
Returns:
True if input or output with requested name exists else False
"""
return name in sum([list(t.get_names()) for t in ov_model.inputs + ov_model.outputs], [])
def fuse_cache_reorder(
ov_model: ov.Model,
not_kv_inputs: List[str],
key_value_input_names: List[str],
gather_dim: int,
):
"""
Fuses reored_cache during generate cycle into ov.Model. Used with stateful models, because we can not modify model state directly.
Adds a new beam_idx parameter and Gather op per each kv-cache input in a given model.
Should be run before make_stateful. Implements optimumum's _reorder_cache
inside the model in the beginning of each iteration.
Gather works along given gather_dim dimension that may vary from model to model.
KV-cache inputs are identified based on names in key_value_input_names.
Append the new beam_idx parameter to not_kv_inputs.
Parameters:
ov_model (`ov.Model`):
openvino model for processing
not_kv_inputs (`List[str]`):
list of input nodes in model that not related to past key values
key_value_input_names (`List[str]`):
list of names for key value input layers
gather_dim (int):
dimension for gathering cache during reorder pass
"""
if model_has_input_output_name(ov_model, "beam_idx"):
raise ValueError("Model already has fused cache")
input_batch = ov_model.input("inputs_embeds").get_partial_shape()[0]
beam_idx = opset13.parameter(name="beam_idx", dtype=ov.Type.i32, shape=ov.PartialShape([input_batch]))
beam_idx.output(0).get_tensor().add_names({"beam_idx"}) # why list is not accepted?
ov_model.add_parameters([beam_idx])
not_kv_inputs.append(ov_model.inputs[-1])
# Go over all cache parameters and fuse _reorder_cache with indices provided by the new parameter beam_idx
for input_name in key_value_input_names:
parameter_output_port = ov_model.input(input_name)
consumers = parameter_output_port.get_target_inputs()
gather = opset13.gather(parameter_output_port, beam_idx, opset13.constant(gather_dim))
for consumer in consumers:
consumer.replace_source_output(gather.output(0))
ov_model.validate_nodes_and_infer_types()
def build_state_initializer(ov_model: ov.Model, batch_dim: int):
"""
Build initialization ShapeOf Expression for all ReadValue ops
Parameters:
ov_model (ov.Model):
openvino model
batch_dim (int):
index of dimension corresponding to batch size
"""
input_ids = ov_model.input("inputs_embeds")
batch = opset13.gather(
opset13.shape_of(input_ids, output_type="i64"),
opset13.constant([0]),
opset13.constant(0),
)
for op in ov_model.get_ops():
if op.get_type_name() == "ReadValue":
dims = [dim.min_length for dim in list(op.get_output_partial_shape(0))]
dims[batch_dim] = batch
dims = [(opset13.constant(np.array([dim], dtype=np.int64)) if isinstance(dim, int) else dim) for dim in dims]
shape = opset13.concat(dims, axis=0)
broadcast = opset13.broadcast(opset13.constant(0.0, dtype=op.get_output_element_type(0)), shape)
op.set_arguments([broadcast])
ov_model.validate_nodes_and_infer_types()
def make_stateful(
ov_model: ov.Model,
not_kv_inputs: List[str],
key_value_input_names: List[str],
key_value_output_names: List[str],
batch_dim: int,
num_attention_heads: int,
num_beams_and_batch: int = None,
):
"""
Hides kv-cache inputs and outputs inside the model as variables.
Parameters:
ov_model (ov.Model):
openvino model
not_kv_inputs (`List[str]`):
list of input nodes in model that not related to past key values
key_value_input_names (`List[str]`):
list of names for key value input layers
key_value_output_names (`List[str]`):
list of names for key value input layers
batch_dim (int):
index of batch dimension in key value layers
num_attention_heads (int):
number of attention heads for batch dimension initialization
num_beams_an_batch (int):
precalculated number of beams and batch for shapes initialization
"""
from openvino._offline_transformations import apply_make_stateful_transformation
input_output_map = {}
if num_beams_and_batch is not None:
# Set batch size for input_ids and attention mask to avoid dynamic dimension got propagated from the end of the model back to ReadValue
for input in not_kv_inputs:
shape = input.get_partial_shape()
if shape.rank.get_length() <= 2: # == 1 for beam_index
shape[0] = num_beams_and_batch
input.get_node().set_partial_shape(shape)
for kv_name_pair in zip(key_value_input_names, key_value_output_names):
input_output_map[kv_name_pair[0]] = kv_name_pair[1]
if num_beams_and_batch is not None:
input = ov_model.input(kv_name_pair[0])
shape = input.get_partial_shape()
shape[batch_dim] = num_beams_and_batch * num_attention_heads
input.get_node().set_partial_shape(shape)
if num_beams_and_batch is not None:
# Re-validation model if shapes are altered above
ov_model.validate_nodes_and_infer_types()
apply_make_stateful_transformation(ov_model, input_output_map)
if num_beams_and_batch is None:
build_state_initializer(ov_model, batch_dim)
def patch_stateful(ov_model):
key_value_input_names = [key.get_any_name() for key in ov_model.inputs[2:-1]]
key_value_output_names = [key.get_any_name() for key in ov_model.outputs[1:]]
not_kv_inputs = [input for input in ov_model.inputs if not any(name in key_value_input_names for name in input.get_names())]
if not key_value_input_names or not key_value_output_names:
return
batch_dim = 0
num_attention_heads = 1
fuse_cache_reorder(ov_model, not_kv_inputs, key_value_input_names, batch_dim)
make_stateful(
ov_model,
not_kv_inputs,
key_value_input_names,
key_value_output_names,
batch_dim,
num_attention_heads,
None,
)
core = ov.Core()
def cleanup_torchscript_cache():
"""
Helper for removing cached model representation
"""
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
torch.jit._state._clear_class_state()
LANGUAGE_MODEL_NAME = "openvino_language_model.xml"
IMAGE_EMBEDDING_NAME = "openvino_vision_embeddings_model.xml"
IMAGE_EMBEDDING_MERGER_NAME = "openvino_vision_embeddings_merger_model.xml"
TEXT_EMBEDDING_NAME = "openvino_text_embeddings_model.xml"
def convert_qwen2vl_model(model_id, output_dir, quantization_config):
output_dir = Path(output_dir)
lang_model_path = output_dir / LANGUAGE_MODEL_NAME
image_embed_path = output_dir / IMAGE_EMBEDDING_NAME
embed_token_path = output_dir / TEXT_EMBEDDING_NAME
image_embed_merger_path = output_dir / IMAGE_EMBEDDING_MERGER_NAME
if all(
[
lang_model_path.exists(),
image_embed_path.exists(),
image_embed_merger_path.exists(),
embed_token_path.exists(),
]
):
print(f"β
{model_id} model already converted. You can find results in {output_dir}")
return
print(f"β {model_id} conversion started. Be patient, it may takes some time.")
print("β Load Original model")
model = Qwen2VLForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
model.config.save_pretrained(output_dir)
processor.save_pretrained(output_dir)
print("β
Original model successfully loaded")
if not embed_token_path.exists():
print("β Convert Input embedding model")
ov_model = ov.convert_model(
model.model.embed_tokens,
example_input=torch.ones([2, 2], dtype=torch.int64),
)
ov.save_model(ov_model, embed_token_path)
del ov_model
cleanup_torchscript_cache()
gc.collect()
print("β
Input embedding model successfully converted")
if not image_embed_path.exists() or not image_embed_merger_path.exists():
print("β Convert Image embedding model")
vision_embed_tokens = model.visual
if not image_embed_path.exists():
ov_model = ov.convert_model(vision_embed_tokens.patch_embed, example_input={"hidden_states": torch.randn([4988, 1176])})
ov.save_model(ov_model, image_embed_path)
del ov_model
cleanup_torchscript_cache()
def image_embed_forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, rotary_pos_emb: torch.Tensor) -> torch.Tensor:
for blk in self.blocks:
hidden_states = blk(hidden_states, attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb)
return self.merger(hidden_states)
def sdpa_attn_forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, rotary_pos_emb: torch.Tensor = None) -> torch.Tensor:
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_rotary_pos_emb_vision
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
def block_forward(self, hidden_states, attention_mask, rotary_pos_emb) -> torch.Tensor:
hidden_states = hidden_states + self.attn(self.norm1(hidden_states), attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
if not image_embed_merger_path.exists():
vision_embed_tokens.forward = types.MethodType(image_embed_forward, vision_embed_tokens)
for block in vision_embed_tokens.blocks:
block.forward = types.MethodType(block_forward, block)
block.attn.forward = types.MethodType(sdpa_attn_forward, block.attn)
ov_model = ov.convert_model(
vision_embed_tokens,
example_input={
"hidden_states": torch.randn([4988, 1280]),
"attention_mask": torch.ones([1, 4988, 4988]),
"rotary_pos_emb": torch.randn([4988, 40]),
},
)
if quantization_config is not None:
print(f"β Weights compression with {quantization_config['mode']} mode started")
ov_model = nncf.compress_weights(ov_model, **quantization_config)
print("β
Weights compression finished")
ov.save_model(ov_model, image_embed_merger_path)
del ov_model
cleanup_torchscript_cache()
del vision_embed_tokens
gc.collect()
print("β
Image embedding model successfully converted")
if not lang_model_path.exists():
print("β Convert Language model")
def forward_wrap(
self,
attention_mask,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
):
new_past_key_values = DynamicCache.from_legacy_cache(past_key_values)
result = self._orig_forward(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=new_past_key_values,
inputs_embeds=inputs_embeds,
)
if past_key_values is not None:
result["past_key_values"] = result["past_key_values"].to_legacy_cache()
return tuple(result.values())
model._orig_forward = model.forward
model.forward = types.MethodType(forward_wrap, model)
hidden_size = model.config.hidden_size
num_pkv = model.config.num_hidden_layers
pkv_shape = (2, model.config.num_key_value_heads, 2, hidden_size // model.config.num_attention_heads)
cache_position = torch.arange(2, 4)
position_ids = cache_position.view(1, 1, -1).expand(3, 2, -1)
input_embeds = torch.randn((2, 2, hidden_size))
attention_mask = torch.ones([2, 4], dtype=torch.long)
input_names = ["attention_mask", "position_ids"]
output_names = ["logits"]
past_key_values = []
for i in range(num_pkv):
kv = [torch.randn(pkv_shape) for _ in range(2)]
past_key_values.append(kv)
input_names.extend([f"past_key_values.{i}.key", f"past_key_values.{i}.value"])
output_names.extend([f"present.{i}.key", f"present.{i}.value"])
input_names.append("inputs_embeds")
example_input = {"inputs_embeds": input_embeds, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values}
ov_model = ov.convert_model(
model,
example_input=example_input,
)
for input, input_name in zip(ov_model.inputs, input_names):
input.get_tensor().set_names({input_name})
for output, output_name in zip(ov_model.outputs, output_names):
output.get_tensor().set_names({output_name})
patch_stateful(ov_model)
print("β
Language model successfully converted")
if quantization_config is not None:
print(f"β Weights compression with {quantization_config['mode']} mode started")
ov_model = nncf.compress_weights(ov_model, **quantization_config)
print("β
Weights compression finished")
ov.save_model(ov_model, lang_model_path, False)
del ov_model
cleanup_torchscript_cache()
del model
gc.collect()
print(f"β
{model_id} model conversion finished. You can find results in {output_dir}")
class OVQwen2VLModel(GenerationMixin):
def __init__(self, model_dir, device, ov_config=None):
model_dir = Path(model_dir)
self.model = core.read_model(model_dir / LANGUAGE_MODEL_NAME)
self.image_embed = core.compile_model(model_dir / IMAGE_EMBEDDING_NAME, device, ov_config)
self.image_embed_merger = core.compile_model(model_dir / IMAGE_EMBEDDING_MERGER_NAME, device, ov_config)
self.embed_tokens = core.compile_model(model_dir / TEXT_EMBEDDING_NAME, device)
self.input_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.inputs)}
self.output_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.outputs)}
compiled_model = core.compile_model(self.model, device, ov_config)
self.request = compiled_model.create_infer_request()
self.config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
self.generation_config = GenerationConfig.from_model_config(self.config)
self.main_input_name = "input_ids"
self.device = torch.device("cpu")
self.num_pkv = 2
self._supports_cache_class = False
self.next_beam_idx = None
self._past_length = None
self._rotary_pos_emb = VisionRotaryEmbedding(self.config.vision_config.embed_dim // self.config.vision_config.num_heads // 2)
def can_generate(self):
"""Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""
return True
def __call__(self, *args, **kwargs) -> CausalLMOutputWithPast:
return self.forward(
*args,
**kwargs,
)
def _reorder_cache(self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called.
This is required to match `past_key_values` with the correct beam_idx at every generation step.
"""
self.next_beam_idx = np.array(beam_idx) # save beam_idx to be used as an input in the next iteration
return past_key_values
def _get_past_length(self, past_key_values=None):
if past_key_values is None:
return 0
return self._past_length
def get_rope_index(
self,
input_ids: torch.LongTensor,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
Explanation:
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs.
Examples:
input_ids: [T T T T T], here T is for text.
temporal position_ids: [0, 1, 2, 3, 4]
height position_ids: [0, 1, 2, 3, 4]
width position_ids: [0, 1, 2, 3, 4]
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
and 1D rotary position embeddin for text part.
Examples:
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
text temporal position_ids: [3, 4, 5, 6, 7]
text height position_ids: [3, 4, 5, 6, 7]
text width position_ids: [3, 4, 5, 6, 7]
Here we calculate the text start position_ids as the max vision position_ids plus 1.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
"""
spatial_merge_size = self.config.vision_config.spatial_merge_size
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
mrope_position_deltas = []
if image_grid_thw is not None or video_grid_thw is not None:
total_input_ids = input_ids
position_ids = torch.ones(3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device)
image_index, video_index = 0, 0
for i, input_ids in enumerate(total_input_ids):
if attention_mask is not None:
input_ids = input_ids[attention_mask[i] == 1]
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t.item(),
h.item() // spatial_merge_size,
w.item() // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
if attention_mask is not None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
else:
position_ids = torch.arange(input_ids.shape[1], device=input_ids.device).view(1, 1, -1).expand(3, input_ids.shape[0], -1)
mrope_position_deltas = torch.zeros(
[input_ids.shape[0], 1],
device=input_ids.device,
dtype=input_ids.dtype,
)
return position_ids, mrope_position_deltas
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
model_kwargs = super()._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
num_new_tokens=num_new_tokens,
)
if getattr(outputs, "rope_deltas", None) is not None:
model_kwargs["rope_deltas"] = outputs.rope_deltas
return model_kwargs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
pixel_values_videos=None,
image_grid_thw=None,
video_grid_thw=None,
**kwargs,
):
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
rope_deltas = kwargs.get("rope_deltas", None)
if attention_mask is not None and position_ids is None:
if cache_position is None or (cache_position is not None and cache_position[0] == 0):
position_ids, rope_deltas = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask)
else:
batch_size, seq_length = input_ids.shape
delta = cache_position[0] + rope_deltas if cache_position is not None and rope_deltas is not None else 0
position_ids = torch.arange(seq_length, device=input_ids.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
if cache_position[0] != 0:
pixel_values = None
pixel_values_videos = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"pixel_values_videos": pixel_values_videos,
"image_grid_thw": image_grid_thw,
"video_grid_thw": video_grid_thw,
"rope_deltas": rope_deltas,
}
)
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
r"""
Args:.to(inputs_embeds.device)
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)[0]
if pixel_values is not None:
pixel_values = pixel_values
image_embeds = self.visual(pixel_values, image_grid_thw)
image_mask = input_ids == self.config.image_token_id
inputs_embeds[image_mask] = image_embeds
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos
video_embeds = self.visual(pixel_values_videos, video_grid_thw)
video_mask = input_ids == self.config.video_token_id
inputs_embeds[video_mask] = video_embeds
if attention_mask is not None:
attention_mask = attention_mask
if past_key_values is None:
self.request.reset_state()
self.next_beam_idx = np.arange(inputs_embeds.shape[0], dtype=int)
self._past_length = 0
inputs = {}
inputs["inputs_embeds"] = inputs_embeds
inputs["attention_mask"] = attention_mask
inputs["position_ids"] = position_ids
if "beam_idx" in self.input_names:
inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(inputs_embeds.shape[0], dtype=int)
self.request.start_async(inputs, share_inputs=True)
self.request.wait()
logits = self.request.get_tensor("logits").data
logits = torch.from_numpy(logits).to(self.device)
past_key_values = ((),)
self._past_length += inputs["inputs_embeds"].shape[1]
return Qwen2VLCausalLMOutputWithPast(
loss=None,
logits=logits,
past_key_values=past_key_values,
rope_deltas=rope_deltas,
)
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
w // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
w // self.config.vision_config.spatial_merge_size,
self.config.vision_config.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self._rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def visual(self, hidden_states, grid_thw):
hidden_states = self.image_embed(hidden_states)[0]
rotary_pos_emb = self.rot_pos_emb(grid_thw)
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(dim=0, dtype=torch.int32)
cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
attention_mask = torch.zeros((1, hidden_states.shape[0], hidden_states.shape[0]), dtype=torch.bool)
causal_mask = torch.zeros_like(attention_mask, dtype=torch.float32)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
causal_mask.masked_fill_(torch.logical_not(attention_mask), float("-inf"))
res = self.image_embed_merger([hidden_states, causal_mask, rotary_pos_emb])[0]
return res |