File size: 37,429 Bytes
a2fedce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
from pathlib import Path
import types
from typing import Optional, Tuple, Union, List, Dict, Any
import gc
import openvino as ov
from openvino.runtime import opset13
import nncf
import numpy as np
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoConfig
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, VisionRotaryEmbedding
from transformers.cache_utils import DynamicCache
from transformers.modeling_outputs import ModelOutput
from transformers.generation import GenerationConfig, GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast

model_ids = ["Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-VL-7B-Instruct"]


def model_selector(default=model_ids[0]):
    import ipywidgets as widgets

    model_checkpoint = widgets.Dropdown(
        options=model_ids,
        default=default,
        description="Model:",
    )
    return model_checkpoint


def model_has_state(ov_model: ov.Model):
    return len(ov_model.get_sinks()) > 0


def model_has_input_output_name(ov_model: ov.Model, name: str):
    """

    Helper function for checking that model has specified input or output name



    Parameters:

      ov_model (ov.Model):

      name (str):

          name of input or output



    Returns:

      True if input or output with requested name exists else False

    """
    return name in sum([list(t.get_names()) for t in ov_model.inputs + ov_model.outputs], [])


def fuse_cache_reorder(

    ov_model: ov.Model,

    not_kv_inputs: List[str],

    key_value_input_names: List[str],

    gather_dim: int,

):
    """

    Fuses reored_cache during generate cycle into ov.Model. Used with stateful models, because we can not modify model state directly.



    Adds a new beam_idx parameter and Gather op per each kv-cache input in a given model.

    Should be run before make_stateful. Implements optimumum's _reorder_cache

    inside the model in the beginning of each iteration.

    Gather works along given gather_dim dimension that may vary from model to model.

    KV-cache inputs are identified based on names in key_value_input_names.

    Append the new beam_idx parameter to not_kv_inputs.



    Parameters:

      ov_model (`ov.Model`):

          openvino model for processing

      not_kv_inputs (`List[str]`):

          list of input nodes in model that not related to past key values

      key_value_input_names (`List[str]`):

          list of names for key value input layers

      gather_dim (int):

          dimension for gathering cache during reorder pass

    """

    if model_has_input_output_name(ov_model, "beam_idx"):
        raise ValueError("Model already has fused cache")
    input_batch = ov_model.input("inputs_embeds").get_partial_shape()[0]
    beam_idx = opset13.parameter(name="beam_idx", dtype=ov.Type.i32, shape=ov.PartialShape([input_batch]))
    beam_idx.output(0).get_tensor().add_names({"beam_idx"})  # why list is not accepted?
    ov_model.add_parameters([beam_idx])
    not_kv_inputs.append(ov_model.inputs[-1])
    # Go over all cache parameters and fuse _reorder_cache with indices provided by the new parameter beam_idx
    for input_name in key_value_input_names:
        parameter_output_port = ov_model.input(input_name)
        consumers = parameter_output_port.get_target_inputs()
        gather = opset13.gather(parameter_output_port, beam_idx, opset13.constant(gather_dim))
        for consumer in consumers:
            consumer.replace_source_output(gather.output(0))
    ov_model.validate_nodes_and_infer_types()


def build_state_initializer(ov_model: ov.Model, batch_dim: int):
    """

    Build initialization ShapeOf Expression for all ReadValue ops



    Parameters:

      ov_model (ov.Model):

          openvino model

      batch_dim (int):

          index of dimension corresponding to batch size

    """
    input_ids = ov_model.input("inputs_embeds")
    batch = opset13.gather(
        opset13.shape_of(input_ids, output_type="i64"),
        opset13.constant([0]),
        opset13.constant(0),
    )
    for op in ov_model.get_ops():
        if op.get_type_name() == "ReadValue":
            dims = [dim.min_length for dim in list(op.get_output_partial_shape(0))]
            dims[batch_dim] = batch
            dims = [(opset13.constant(np.array([dim], dtype=np.int64)) if isinstance(dim, int) else dim) for dim in dims]
            shape = opset13.concat(dims, axis=0)
            broadcast = opset13.broadcast(opset13.constant(0.0, dtype=op.get_output_element_type(0)), shape)
            op.set_arguments([broadcast])
    ov_model.validate_nodes_and_infer_types()


def make_stateful(

    ov_model: ov.Model,

    not_kv_inputs: List[str],

    key_value_input_names: List[str],

    key_value_output_names: List[str],

    batch_dim: int,

    num_attention_heads: int,

    num_beams_and_batch: int = None,

):
    """

    Hides kv-cache inputs and outputs inside the model as variables.



    Parameters:

        ov_model (ov.Model):

            openvino model

        not_kv_inputs (`List[str]`):

            list of input nodes in model that not related to past key values

        key_value_input_names (`List[str]`):

            list of names for key value input layers

        key_value_output_names (`List[str]`):

            list of names for key value input layers

        batch_dim (int):

            index of batch dimension in key value layers

        num_attention_heads (int):

            number of attention heads for batch dimension initialization

        num_beams_an_batch (int):

            precalculated number of beams and batch for shapes initialization

    """
    from openvino._offline_transformations import apply_make_stateful_transformation

    input_output_map = {}

    if num_beams_and_batch is not None:
        # Set batch size for input_ids and attention mask to avoid dynamic dimension got propagated from the end of the model back to ReadValue
        for input in not_kv_inputs:
            shape = input.get_partial_shape()
            if shape.rank.get_length() <= 2:  # == 1 for beam_index
                shape[0] = num_beams_and_batch
                input.get_node().set_partial_shape(shape)
    for kv_name_pair in zip(key_value_input_names, key_value_output_names):
        input_output_map[kv_name_pair[0]] = kv_name_pair[1]
        if num_beams_and_batch is not None:
            input = ov_model.input(kv_name_pair[0])
            shape = input.get_partial_shape()
            shape[batch_dim] = num_beams_and_batch * num_attention_heads
            input.get_node().set_partial_shape(shape)

    if num_beams_and_batch is not None:
        # Re-validation model if shapes are altered above
        ov_model.validate_nodes_and_infer_types()

    apply_make_stateful_transformation(ov_model, input_output_map)
    if num_beams_and_batch is None:
        build_state_initializer(ov_model, batch_dim)


def patch_stateful(ov_model):
    key_value_input_names = [key.get_any_name() for key in ov_model.inputs[2:-1]]
    key_value_output_names = [key.get_any_name() for key in ov_model.outputs[1:]]
    not_kv_inputs = [input for input in ov_model.inputs if not any(name in key_value_input_names for name in input.get_names())]
    if not key_value_input_names or not key_value_output_names:
        return
    batch_dim = 0
    num_attention_heads = 1

    fuse_cache_reorder(ov_model, not_kv_inputs, key_value_input_names, batch_dim)
    make_stateful(
        ov_model,
        not_kv_inputs,
        key_value_input_names,
        key_value_output_names,
        batch_dim,
        num_attention_heads,
        None,
    )


core = ov.Core()


def cleanup_torchscript_cache():
    """

    Helper for removing cached model representation

    """
    torch._C._jit_clear_class_registry()
    torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
    torch.jit._state._clear_class_state()


LANGUAGE_MODEL_NAME = "openvino_language_model.xml"
IMAGE_EMBEDDING_NAME = "openvino_vision_embeddings_model.xml"
IMAGE_EMBEDDING_MERGER_NAME = "openvino_vision_embeddings_merger_model.xml"
TEXT_EMBEDDING_NAME = "openvino_text_embeddings_model.xml"


def convert_qwen2vl_model(model_id, output_dir, quantization_config):
    output_dir = Path(output_dir)

    lang_model_path = output_dir / LANGUAGE_MODEL_NAME
    image_embed_path = output_dir / IMAGE_EMBEDDING_NAME
    embed_token_path = output_dir / TEXT_EMBEDDING_NAME
    image_embed_merger_path = output_dir / IMAGE_EMBEDDING_MERGER_NAME

    if all(
        [
            lang_model_path.exists(),
            image_embed_path.exists(),
            image_embed_merger_path.exists(),
            embed_token_path.exists(),
        ]
    ):
        print(f"βœ… {model_id} model already converted. You can find results in {output_dir}")
        return
    print(f"βŒ› {model_id} conversion started. Be patient, it may takes some time.")
    print("βŒ› Load Original model")
    model = Qwen2VLForConditionalGeneration.from_pretrained(model_id)
    processor = AutoProcessor.from_pretrained(model_id)
    model.config.save_pretrained(output_dir)
    processor.save_pretrained(output_dir)
    print("βœ… Original model successfully loaded")

    if not embed_token_path.exists():
        print("βŒ› Convert Input embedding model")
        ov_model = ov.convert_model(
            model.model.embed_tokens,
            example_input=torch.ones([2, 2], dtype=torch.int64),
        )
        ov.save_model(ov_model, embed_token_path)
        del ov_model
        cleanup_torchscript_cache()
        gc.collect()
        print("βœ… Input embedding model successfully converted")

    if not image_embed_path.exists() or not image_embed_merger_path.exists():
        print("βŒ› Convert Image embedding model")

        vision_embed_tokens = model.visual
        if not image_embed_path.exists():
            ov_model = ov.convert_model(vision_embed_tokens.patch_embed, example_input={"hidden_states": torch.randn([4988, 1176])})
            ov.save_model(ov_model, image_embed_path)
            del ov_model
            cleanup_torchscript_cache()

        def image_embed_forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, rotary_pos_emb: torch.Tensor) -> torch.Tensor:
            for blk in self.blocks:
                hidden_states = blk(hidden_states, attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb)

            return self.merger(hidden_states)

        def sdpa_attn_forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, rotary_pos_emb: torch.Tensor = None) -> torch.Tensor:
            from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_rotary_pos_emb_vision

            seq_length = hidden_states.shape[0]
            q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
            q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
            k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

            q = q.transpose(0, 1)
            k = k.transpose(0, 1)
            v = v.transpose(0, 1)
            attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
            attn_output = attn_output.transpose(0, 1)
            attn_output = attn_output.reshape(seq_length, -1)
            attn_output = self.proj(attn_output)
            return attn_output

        def block_forward(self, hidden_states, attention_mask, rotary_pos_emb) -> torch.Tensor:
            hidden_states = hidden_states + self.attn(self.norm1(hidden_states), attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb)
            hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
            return hidden_states

        if not image_embed_merger_path.exists():
            vision_embed_tokens.forward = types.MethodType(image_embed_forward, vision_embed_tokens)
            for block in vision_embed_tokens.blocks:
                block.forward = types.MethodType(block_forward, block)
                block.attn.forward = types.MethodType(sdpa_attn_forward, block.attn)

            ov_model = ov.convert_model(
                vision_embed_tokens,
                example_input={
                    "hidden_states": torch.randn([4988, 1280]),
                    "attention_mask": torch.ones([1, 4988, 4988]),
                    "rotary_pos_emb": torch.randn([4988, 40]),
                },
            )
            if quantization_config is not None:
                print(f"βŒ› Weights compression with {quantization_config['mode']} mode started")
                ov_model = nncf.compress_weights(ov_model, **quantization_config)
                print("βœ… Weights compression finished")

            ov.save_model(ov_model, image_embed_merger_path)
            del ov_model
            cleanup_torchscript_cache()
        del vision_embed_tokens
        gc.collect()
        print("βœ… Image embedding model successfully converted")

    if not lang_model_path.exists():
        print("βŒ› Convert Language model")

        def forward_wrap(

            self,

            attention_mask,

            position_ids=None,

            past_key_values=None,

            inputs_embeds=None,

        ):
            new_past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            result = self._orig_forward(
                input_ids=None,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=new_past_key_values,
                inputs_embeds=inputs_embeds,
            )
            if past_key_values is not None:
                result["past_key_values"] = result["past_key_values"].to_legacy_cache()
            return tuple(result.values())

        model._orig_forward = model.forward
        model.forward = types.MethodType(forward_wrap, model)
        hidden_size = model.config.hidden_size
        num_pkv = model.config.num_hidden_layers
        pkv_shape = (2, model.config.num_key_value_heads, 2, hidden_size // model.config.num_attention_heads)
        cache_position = torch.arange(2, 4)
        position_ids = cache_position.view(1, 1, -1).expand(3, 2, -1)

        input_embeds = torch.randn((2, 2, hidden_size))
        attention_mask = torch.ones([2, 4], dtype=torch.long)
        input_names = ["attention_mask", "position_ids"]
        output_names = ["logits"]

        past_key_values = []
        for i in range(num_pkv):
            kv = [torch.randn(pkv_shape) for _ in range(2)]
            past_key_values.append(kv)
            input_names.extend([f"past_key_values.{i}.key", f"past_key_values.{i}.value"])
            output_names.extend([f"present.{i}.key", f"present.{i}.value"])
        input_names.append("inputs_embeds")

        example_input = {"inputs_embeds": input_embeds, "attention_mask": attention_mask, "position_ids": position_ids, "past_key_values": past_key_values}

        ov_model = ov.convert_model(
            model,
            example_input=example_input,
        )

        for input, input_name in zip(ov_model.inputs, input_names):
            input.get_tensor().set_names({input_name})

        for output, output_name in zip(ov_model.outputs, output_names):
            output.get_tensor().set_names({output_name})
        patch_stateful(ov_model)
        print("βœ… Language model successfully converted")

        if quantization_config is not None:
            print(f"βŒ› Weights compression with {quantization_config['mode']} mode started")
            ov_model = nncf.compress_weights(ov_model, **quantization_config)
            print("βœ… Weights compression finished")

        ov.save_model(ov_model, lang_model_path, False)
        del ov_model
        cleanup_torchscript_cache()
        del model
        gc.collect()
        print(f"βœ… {model_id} model conversion finished. You can find results in {output_dir}")


class OVQwen2VLModel(GenerationMixin):
    def __init__(self, model_dir, device, ov_config=None):
        model_dir = Path(model_dir)
        self.model = core.read_model(model_dir / LANGUAGE_MODEL_NAME)
        self.image_embed = core.compile_model(model_dir / IMAGE_EMBEDDING_NAME, device, ov_config)
        self.image_embed_merger = core.compile_model(model_dir / IMAGE_EMBEDDING_MERGER_NAME, device, ov_config)
        self.embed_tokens = core.compile_model(model_dir / TEXT_EMBEDDING_NAME, device)
        self.input_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.inputs)}
        self.output_names = {key.get_any_name(): idx for idx, key in enumerate(self.model.outputs)}
        compiled_model = core.compile_model(self.model, device, ov_config)
        self.request = compiled_model.create_infer_request()
        self.config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
        self.generation_config = GenerationConfig.from_model_config(self.config)
        self.main_input_name = "input_ids"
        self.device = torch.device("cpu")
        self.num_pkv = 2
        self._supports_cache_class = False
        self.next_beam_idx = None
        self._past_length = None
        self._rotary_pos_emb = VisionRotaryEmbedding(self.config.vision_config.embed_dim // self.config.vision_config.num_heads // 2)

    def can_generate(self):
        """Returns True to validate the check that the model using `GenerationMixin.generate()` can indeed generate."""
        return True

    def __call__(self, *args, **kwargs) -> CausalLMOutputWithPast:
        return self.forward(
            *args,
            **kwargs,
        )

    def _reorder_cache(self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """

        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or

        [`~PreTrainedModel.beam_sample`] is called.

        This is required to match `past_key_values` with the correct beam_idx at every generation step.

        """
        self.next_beam_idx = np.array(beam_idx)  # save beam_idx to be used as an input in the next iteration
        return past_key_values

    def _get_past_length(self, past_key_values=None):
        if past_key_values is None:
            return 0
        return self._past_length

    def get_rope_index(

        self,

        input_ids: torch.LongTensor,

        image_grid_thw: Optional[torch.LongTensor] = None,

        video_grid_thw: Optional[torch.LongTensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Calculate the 3D rope index based on image and video's temporal, height and width in LLM.



        Explanation:

            Each embedding sequence contains vision embedding and text embedding or just contains text embedding.



            For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs.

            Examples:

                input_ids: [T T T T T], here T is for text.

                temporal position_ids: [0, 1, 2, 3, 4]

                height position_ids: [0, 1, 2, 3, 4]

                width position_ids: [0, 1, 2, 3, 4]



            For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part

            and 1D rotary position embeddin for text part.

            Examples:

                Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.

                input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.

                vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]

                vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]

                vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

                text temporal position_ids: [3, 4, 5, 6, 7]

                text height position_ids: [3, 4, 5, 6, 7]

                text width position_ids: [3, 4, 5, 6, 7]

                Here we calculate the text start position_ids as the max vision position_ids plus 1.



        Args:

            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide

                it.

            image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):

                The temporal, height and width of feature shape of each image in LLM.

            video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):

                The temporal, height and width of feature shape of each video in LLM.

            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



                - 1 for tokens that are **not masked**,

                - 0 for tokens that are **masked**.



        Returns:

            position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)

            mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)

        """
        spatial_merge_size = self.config.vision_config.spatial_merge_size
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id
        mrope_position_deltas = []
        if image_grid_thw is not None or video_grid_thw is not None:
            total_input_ids = input_ids
            position_ids = torch.ones(3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device)
            image_index, video_index = 0, 0
            for i, input_ids in enumerate(total_input_ids):
                if attention_mask is not None:
                    input_ids = input_ids[attention_mask[i] == 1]
                image_nums, video_nums = 0, 0
                vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
                vision_tokens = input_ids[vision_start_indices + 1]
                image_nums = (vision_tokens == image_token_id).sum()
                video_nums = (vision_tokens == video_token_id).sum()
                input_tokens = input_ids.tolist()
                llm_pos_ids_list: list = []
                st = 0
                remain_images, remain_videos = image_nums, video_nums
                for _ in range(image_nums + video_nums):
                    if image_token_id in input_tokens and remain_images > 0:
                        ed_image = input_tokens.index(image_token_id, st)
                    else:
                        ed_image = len(input_tokens) + 1
                    if video_token_id in input_tokens and remain_videos > 0:
                        ed_video = input_tokens.index(video_token_id, st)
                    else:
                        ed_video = len(input_tokens) + 1
                    if ed_image < ed_video:
                        t, h, w = (
                            image_grid_thw[image_index][0],
                            image_grid_thw[image_index][1],
                            image_grid_thw[image_index][2],
                        )
                        image_index += 1
                        remain_images -= 1
                        ed = ed_image
                    else:
                        t, h, w = (
                            video_grid_thw[video_index][0],
                            video_grid_thw[video_index][1],
                            video_grid_thw[video_index][2],
                        )
                        video_index += 1
                        remain_videos -= 1
                        ed = ed_video
                    llm_grid_t, llm_grid_h, llm_grid_w = (
                        t.item(),
                        h.item() // spatial_merge_size,
                        w.item() // spatial_merge_size,
                    )
                    text_len = ed - st

                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                    t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
                    h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                    w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                    llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                    st = ed + llm_grid_t * llm_grid_h * llm_grid_w

                if st < len(input_tokens):
                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    text_len = len(input_tokens) - st
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
                position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
                mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
            mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
            return position_ids, mrope_position_deltas
        else:
            if attention_mask is not None:
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(input_ids.device)
                max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
                mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
            else:
                position_ids = torch.arange(input_ids.shape[1], device=input_ids.device).view(1, 1, -1).expand(3, input_ids.shape[0], -1)
                mrope_position_deltas = torch.zeros(
                    [input_ids.shape[0], 1],
                    device=input_ids.device,
                    dtype=input_ids.dtype,
                )

            return position_ids, mrope_position_deltas

    def _update_model_kwargs_for_generation(

        self,

        outputs: ModelOutput,

        model_kwargs: Dict[str, Any],

        is_encoder_decoder: bool = False,

        num_new_tokens: int = 1,

    ) -> Dict[str, Any]:
        model_kwargs = super()._update_model_kwargs_for_generation(
            outputs=outputs,
            model_kwargs=model_kwargs,
            is_encoder_decoder=is_encoder_decoder,
            num_new_tokens=num_new_tokens,
        )

        if getattr(outputs, "rope_deltas", None) is not None:
            model_kwargs["rope_deltas"] = outputs.rope_deltas

        return model_kwargs

    def prepare_inputs_for_generation(

        self,

        input_ids,

        past_key_values=None,

        attention_mask=None,

        inputs_embeds=None,

        cache_position=None,

        position_ids=None,

        use_cache=True,

        pixel_values=None,

        pixel_values_videos=None,

        image_grid_thw=None,

        video_grid_thw=None,

        **kwargs,

    ):
        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        rope_deltas = kwargs.get("rope_deltas", None)
        if attention_mask is not None and position_ids is None:
            if cache_position is None or (cache_position is not None and cache_position[0] == 0):
                position_ids, rope_deltas = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask)
            else:
                batch_size, seq_length = input_ids.shape
                delta = cache_position[0] + rope_deltas if cache_position is not None and rope_deltas is not None else 0
                position_ids = torch.arange(seq_length, device=input_ids.device)
                position_ids = position_ids.view(1, -1).expand(batch_size, -1)
                position_ids = position_ids.add(delta)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)

        if cache_position[0] != 0:
            pixel_values = None
            pixel_values_videos = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "pixel_values": pixel_values,
                "pixel_values_videos": pixel_values_videos,
                "image_grid_thw": image_grid_thw,
                "video_grid_thw": video_grid_thw,
                "rope_deltas": rope_deltas,
            }
        )
        return model_inputs

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

        pixel_values: Optional[torch.Tensor] = None,

        pixel_values_videos: Optional[torch.FloatTensor] = None,

        image_grid_thw: Optional[torch.LongTensor] = None,

        video_grid_thw: Optional[torch.LongTensor] = None,

        rope_deltas: Optional[torch.LongTensor] = None,

    ) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
        r"""

        Args:.to(inputs_embeds.device)

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.



        Returns:



        Example:



        ```python

        >>> from PIL import Image

        >>> import requests

        >>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration



        >>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")

        >>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")



        >>> messages = [

            {

                "role": "user",

                "content": [

                    {"type": "image"},

                    {"type": "text", "text": "What is shown in this image?"},

                ],

            },

        ]

        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"

        >>> image = Image.open(requests.get(url, stream=True).raw)



        >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

        >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])



        >>> # Generate

        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)

        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

        "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."

        ```"""
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)[0]
            if pixel_values is not None:
                pixel_values = pixel_values
                image_embeds = self.visual(pixel_values, image_grid_thw)
                image_mask = input_ids == self.config.image_token_id
                inputs_embeds[image_mask] = image_embeds
            if pixel_values_videos is not None:
                pixel_values_videos = pixel_values_videos
                video_embeds = self.visual(pixel_values_videos, video_grid_thw)
                video_mask = input_ids == self.config.video_token_id
                inputs_embeds[video_mask] = video_embeds
            if attention_mask is not None:
                attention_mask = attention_mask
        if past_key_values is None:
            self.request.reset_state()
            self.next_beam_idx = np.arange(inputs_embeds.shape[0], dtype=int)
            self._past_length = 0
        inputs = {}
        inputs["inputs_embeds"] = inputs_embeds
        inputs["attention_mask"] = attention_mask
        inputs["position_ids"] = position_ids
        if "beam_idx" in self.input_names:
            inputs["beam_idx"] = self.next_beam_idx if self.next_beam_idx is not None else np.arange(inputs_embeds.shape[0], dtype=int)
        self.request.start_async(inputs, share_inputs=True)
        self.request.wait()
        logits = self.request.get_tensor("logits").data
        logits = torch.from_numpy(logits).to(self.device)
        past_key_values = ((),)
        self._past_length += inputs["inputs_embeds"].shape[1]

        return Qwen2VLCausalLMOutputWithPast(
            loss=None,
            logits=logits,
            past_key_values=past_key_values,
            rope_deltas=rope_deltas,
        )

    def rot_pos_emb(self, grid_thw):
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // self.config.vision_config.spatial_merge_size,
                self.config.vision_config.spatial_merge_size,
                w // self.config.vision_config.spatial_merge_size,
                self.config.vision_config.spatial_merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // self.config.vision_config.spatial_merge_size,
                self.config.vision_config.spatial_merge_size,
                w // self.config.vision_config.spatial_merge_size,
                self.config.vision_config.spatial_merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self._rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    def visual(self, hidden_states, grid_thw):
        hidden_states = self.image_embed(hidden_states)[0]
        rotary_pos_emb = self.rot_pos_emb(grid_thw)
        cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(dim=0, dtype=torch.int32)
        cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
        attention_mask = torch.zeros((1, hidden_states.shape[0], hidden_states.shape[0]), dtype=torch.bool)
        causal_mask = torch.zeros_like(attention_mask, dtype=torch.float32)
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True

        causal_mask.masked_fill_(torch.logical_not(attention_mask), float("-inf"))

        res = self.image_embed_merger([hidden_states, causal_mask, rotary_pos_emb])[0]
        return res