#!/usr/bin/env python # coding: utf-8 # In[ ]: import os import platform import sys import threading import time import urllib.parse from os import PathLike from pathlib import Path from typing import List, NamedTuple, Optional, Tuple import numpy as np from openvino.runtime import Core, Type, get_version from IPython.display import HTML, Image, display import openvino as ov from openvino.runtime.passes import Manager, MatcherPass, WrapType, Matcher from openvino.runtime import opset10 as ops # ## Files # # Load an image, download a file, download an IR model, and create a progress bar to show download progress. # In[ ]: def device_widget(default="AUTO", exclude=None, added=None): import openvino as ov import ipywidgets as widgets core = ov.Core() supported_devices = core.available_devices + ["AUTO"] exclude = exclude or [] if exclude: for ex_device in exclude: if ex_device in supported_devices: supported_devices.remove(ex_device) added = added or [] if added: for add_device in added: if add_device not in supported_devices: supported_devices.append(add_device) device = widgets.Dropdown( options=supported_devices, value=default, description="Device:", disabled=False, ) return device def quantization_widget(default=True): import ipywidgets as widgets to_quantize = widgets.Checkbox( value=default, description="Quantization", disabled=False, ) return to_quantize def pip_install(*args): import subprocess # nosec - disable B404:import-subprocess check cli_args = [] for arg in args: cli_args.extend(str(arg).split(" ")) subprocess.run([sys.executable, "-m", "pip", "install", *cli_args], shell=(platform.system() == "Windows"), check=True) def load_image(path: str) -> np.ndarray: """ Loads an image from `path` and returns it as BGR numpy array. `path` should point to an image file, either a local filename or a url. The image is not stored to the filesystem. Use the `download_file` function to download and store an image. :param path: Local path name or URL to image. :return: image as BGR numpy array """ import cv2 import requests if path.startswith("http"): # Set User-Agent to Mozilla because some websites block # requests with User-Agent Python response = requests.get(path, headers={"User-Agent": "Mozilla/5.0"}) array = np.asarray(bytearray(response.content), dtype="uint8") image = cv2.imdecode(array, -1) # Loads the image as BGR else: image = cv2.imread(path) return image def download_file( url: PathLike, filename: PathLike = None, directory: PathLike = None, show_progress: bool = True, silent: bool = False, timeout: int = 10, ) -> PathLike: """ Download a file from a url and save it to the local filesystem. The file is saved to the current directory by default, or to `directory` if specified. If a filename is not given, the filename of the URL will be used. :param url: URL that points to the file to download :param filename: Name of the local file to save. Should point to the name of the file only, not the full path. If None the filename from the url will be used :param directory: Directory to save the file to. Will be created if it doesn't exist If None the file will be saved to the current working directory :param show_progress: If True, show an TQDM ProgressBar :param silent: If True, do not print a message if the file already exists :param timeout: Number of seconds before cancelling the connection attempt :return: path to downloaded file """ from tqdm.notebook import tqdm_notebook import requests filename = filename or Path(urllib.parse.urlparse(url).path).name chunk_size = 16384 # make chunks bigger so that not too many updates are triggered for Jupyter front-end filename = Path(filename) if len(filename.parts) > 1: raise ValueError( "`filename` should refer to the name of the file, excluding the directory. " "Use the `directory` parameter to specify a target directory for the downloaded file." ) # create the directory if it does not exist, and add the directory to the filename if directory is not None: directory = Path(directory) directory.mkdir(parents=True, exist_ok=True) filename = directory / Path(filename) try: response = requests.get(url=url, headers={"User-agent": "Mozilla/5.0"}, stream=True) response.raise_for_status() except ( requests.exceptions.HTTPError ) as error: # For error associated with not-200 codes. Will output something like: "404 Client Error: Not Found for url: {url}" raise Exception(error) from None except requests.exceptions.Timeout: raise Exception( "Connection timed out. If you access the internet through a proxy server, please " "make sure the proxy is set in the shell from where you launched Jupyter." ) from None except requests.exceptions.RequestException as error: raise Exception(f"File downloading failed with error: {error}") from None # download the file if it does not exist, or if it exists with an incorrect file size filesize = int(response.headers.get("Content-length", 0)) if not filename.exists() or (os.stat(filename).st_size != filesize): with tqdm_notebook( total=filesize, unit="B", unit_scale=True, unit_divisor=1024, desc=str(filename), disable=not show_progress, ) as progress_bar: with open(filename, "wb") as file_object: for chunk in response.iter_content(chunk_size): file_object.write(chunk) progress_bar.update(len(chunk)) progress_bar.refresh() else: if not silent: print(f"'{filename}' already exists.") response.close() return filename.resolve() def download_ir_model(model_xml_url: str, destination_folder: PathLike = None) -> PathLike: """ Download IR model from `model_xml_url`. Downloads model xml and bin file; the weights file is assumed to exist at the same location and name as model_xml_url with a ".bin" extension. :param model_xml_url: URL to model xml file to download :param destination_folder: Directory where downloaded model xml and bin are saved. If None, model files are saved to the current directory :return: path to downloaded xml model file """ model_bin_url = model_xml_url[:-4] + ".bin" model_xml_path = download_file(model_xml_url, directory=destination_folder, show_progress=False) download_file(model_bin_url, directory=destination_folder) return model_xml_path # ## Images # ### Convert Pixel Data # # Normalize image pixel values between 0 and 1, and convert images to RGB and BGR. # In[ ]: def normalize_minmax(data): """ Normalizes the values in `data` between 0 and 1 """ if data.max() == data.min(): raise ValueError("Normalization is not possible because all elements of" f"`data` have the same value: {data.max()}.") return (data - data.min()) / (data.max() - data.min()) def to_rgb(image_data: np.ndarray) -> np.ndarray: """ Convert image_data from BGR to RGB """ import cv2 return cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB) def to_bgr(image_data: np.ndarray) -> np.ndarray: """ Convert image_data from RGB to BGR """ import cv2 return cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR) # ## Videos # ### Video Player # # Custom video player to fulfill FPS requirements. You can set target FPS and output size, flip the video horizontally or skip first N frames. # In[ ]: class VideoPlayer: """ Custom video player to fulfill FPS requirements. You can set target FPS and output size, flip the video horizontally or skip first N frames. :param source: Video source. It could be either camera device or video file. :param size: Output frame size. :param flip: Flip source horizontally. :param fps: Target FPS. :param skip_first_frames: Skip first N frames. """ def __init__(self, source, size=None, flip=False, fps=None, skip_first_frames=0, width=1280, height=720): import cv2 self.cv2 = cv2 # This is done to access the package in class methods self.__cap = cv2.VideoCapture(source) # try HD by default to get better video quality self.__cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.__cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) if not self.__cap.isOpened(): raise RuntimeError(f"Cannot open {'camera' if isinstance(source, int) else ''} {source}") # skip first N frames self.__cap.set(cv2.CAP_PROP_POS_FRAMES, skip_first_frames) # fps of input file self.__input_fps = self.__cap.get(cv2.CAP_PROP_FPS) if self.__input_fps <= 0: self.__input_fps = 60 # target fps given by user self.__output_fps = fps if fps is not None else self.__input_fps self.__flip = flip self.__size = None self.__interpolation = None if size is not None: self.__size = size # AREA better for shrinking, LINEAR better for enlarging self.__interpolation = cv2.INTER_AREA if size[0] < self.__cap.get(cv2.CAP_PROP_FRAME_WIDTH) else cv2.INTER_LINEAR # first frame _, self.__frame = self.__cap.read() self.__lock = threading.Lock() self.__thread = None self.__stop = False """ Start playing. """ def start(self): self.__stop = False self.__thread = threading.Thread(target=self.__run, daemon=True) self.__thread.start() """ Stop playing and release resources. """ def stop(self): self.__stop = True if self.__thread is not None: self.__thread.join() self.__cap.release() def __run(self): prev_time = 0 while not self.__stop: t1 = time.time() ret, frame = self.__cap.read() if not ret: break # fulfill target fps if 1 / self.__output_fps < time.time() - prev_time: prev_time = time.time() # replace by current frame with self.__lock: self.__frame = frame t2 = time.time() # time to wait [s] to fulfill input fps wait_time = 1 / self.__input_fps - (t2 - t1) # wait until time.sleep(max(0, wait_time)) self.__frame = None """ Get current frame. """ def next(self): import cv2 with self.__lock: if self.__frame is None: return None # need to copy frame, because can be cached and reused if fps is low frame = self.__frame.copy() if self.__size is not None: frame = self.cv2.resize(frame, self.__size, interpolation=self.__interpolation) if self.__flip: frame = self.cv2.flip(frame, 1) return frame # ## Visualization # ### Segmentation # # Define a SegmentationMap NamedTuple that keeps the labels and colormap for a segmentation project/dataset. Create CityScapesSegmentation and BinarySegmentation SegmentationMaps. Create a function to convert a segmentation map to an RGB image with a colormap, and to show the segmentation result as an overlay over the original image. # In[ ]: class Label(NamedTuple): index: int color: Tuple name: Optional[str] = None # In[ ]: class SegmentationMap(NamedTuple): labels: List def get_colormap(self): return np.array([label.color for label in self.labels]) def get_labels(self): labelnames = [label.name for label in self.labels] if any(labelnames): return labelnames else: return None # In[ ]: cityscape_labels = [ Label(index=0, color=(128, 64, 128), name="road"), Label(index=1, color=(244, 35, 232), name="sidewalk"), Label(index=2, color=(70, 70, 70), name="building"), Label(index=3, color=(102, 102, 156), name="wall"), Label(index=4, color=(190, 153, 153), name="fence"), Label(index=5, color=(153, 153, 153), name="pole"), Label(index=6, color=(250, 170, 30), name="traffic light"), Label(index=7, color=(220, 220, 0), name="traffic sign"), Label(index=8, color=(107, 142, 35), name="vegetation"), Label(index=9, color=(152, 251, 152), name="terrain"), Label(index=10, color=(70, 130, 180), name="sky"), Label(index=11, color=(220, 20, 60), name="person"), Label(index=12, color=(255, 0, 0), name="rider"), Label(index=13, color=(0, 0, 142), name="car"), Label(index=14, color=(0, 0, 70), name="truck"), Label(index=15, color=(0, 60, 100), name="bus"), Label(index=16, color=(0, 80, 100), name="train"), Label(index=17, color=(0, 0, 230), name="motorcycle"), Label(index=18, color=(119, 11, 32), name="bicycle"), Label(index=19, color=(255, 255, 255), name="background"), ] CityScapesSegmentation = SegmentationMap(cityscape_labels) binary_labels = [ Label(index=0, color=(255, 255, 255), name="background"), Label(index=1, color=(0, 0, 0), name="foreground"), ] BinarySegmentation = SegmentationMap(binary_labels) # In[ ]: def segmentation_map_to_image(result: np.ndarray, colormap: np.ndarray, remove_holes: bool = False) -> np.ndarray: """ Convert network result of floating point numbers to an RGB image with integer values from 0-255 by applying a colormap. :param result: A single network result after converting to pixel values in H,W or 1,H,W shape. :param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class. :param remove_holes: If True, remove holes in the segmentation result. :return: An RGB image where each pixel is an int8 value according to colormap. """ import cv2 if len(result.shape) != 2 and result.shape[0] != 1: raise ValueError(f"Expected result with shape (H,W) or (1,H,W), got result with shape {result.shape}") if len(np.unique(result)) > colormap.shape[0]: raise ValueError( f"Expected max {colormap[0]} classes in result, got {len(np.unique(result))} " "different output values. Please make sure to convert the network output to " "pixel values before calling this function." ) elif result.shape[0] == 1: result = result.squeeze(0) result = result.astype(np.uint8) contour_mode = cv2.RETR_EXTERNAL if remove_holes else cv2.RETR_TREE mask = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8) for label_index, color in enumerate(colormap): label_index_map = result == label_index label_index_map = label_index_map.astype(np.uint8) * 255 contours, hierarchies = cv2.findContours(label_index_map, contour_mode, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours( mask, contours, contourIdx=-1, color=color.tolist(), thickness=cv2.FILLED, ) return mask def segmentation_map_to_overlay(image, result, alpha, colormap, remove_holes=False) -> np.ndarray: """ Returns a new image where a segmentation mask (created with colormap) is overlayed on the source image. :param image: Source image. :param result: A single network result after converting to pixel values in H,W or 1,H,W shape. :param alpha: Alpha transparency value for the overlay image. :param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class. :param remove_holes: If True, remove holes in the segmentation result. :return: An RGP image with segmentation mask overlayed on the source image. """ import cv2 if len(image.shape) == 2: image = np.repeat(np.expand_dims(image, -1), 3, 2) mask = segmentation_map_to_image(result, colormap, remove_holes) image_height, image_width = image.shape[:2] mask = cv2.resize(src=mask, dsize=(image_width, image_height)) return cv2.addWeighted(mask, alpha, image, 1 - alpha, 0) # ### Network Results # # Show network result image, optionally together with the source image and a legend with labels. # In[ ]: def viz_result_image( result_image: np.ndarray, source_image: np.ndarray = None, source_title: str = None, result_title: str = None, labels: List[Label] = None, resize: bool = False, bgr_to_rgb: bool = False, hide_axes: bool = False, ): """ Show result image, optionally together with source images, and a legend with labels. :param result_image: Numpy array of RGB result image. :param source_image: Numpy array of source image. If provided this image will be shown next to the result image. source_image is expected to be in RGB format. Set bgr_to_rgb to True if source_image is in BGR format. :param source_title: Title to display for the source image. :param result_title: Title to display for the result image. :param labels: List of labels. If provided, a legend will be shown with the given labels. :param resize: If true, resize the result image to the same shape as the source image. :param bgr_to_rgb: If true, convert the source image from BGR to RGB. Use this option if source_image is a BGR image. :param hide_axes: If true, do not show matplotlib axes. :return: Matplotlib figure with result image """ import cv2 import matplotlib.pyplot as plt from matplotlib.lines import Line2D if bgr_to_rgb: source_image = to_rgb(source_image) if resize: result_image = cv2.resize(result_image, (source_image.shape[1], source_image.shape[0])) num_images = 1 if source_image is None else 2 fig, ax = plt.subplots(1, num_images, figsize=(16, 8), squeeze=False) if source_image is not None: ax[0, 0].imshow(source_image) ax[0, 0].set_title(source_title) ax[0, num_images - 1].imshow(result_image) ax[0, num_images - 1].set_title(result_title) if hide_axes: for a in ax.ravel(): a.axis("off") if labels: colors = labels.get_colormap() lines = [ Line2D( [0], [0], color=[item / 255 for item in c.tolist()], linewidth=3, linestyle="-", ) for c in colors ] plt.legend( lines, labels.get_labels(), bbox_to_anchor=(1, 1), loc="upper left", prop={"size": 12}, ) plt.close(fig) return fig # ### Live Inference # In[ ]: def show_array(frame: np.ndarray, display_handle=None): """ Display array `frame`. Replace information at `display_handle` with `frame` encoded as jpeg image. `frame` is expected to have data in BGR order. Create a display_handle with: `display_handle = display(display_id=True)` """ import cv2 _, frame = cv2.imencode(ext=".jpeg", img=frame) if display_handle is None: display_handle = display(Image(data=frame.tobytes()), display_id=True) else: display_handle.update(Image(data=frame.tobytes())) return display_handle # ## Checks and Alerts # # Create an alert class to show stylized info/error/warning messages and a `check_device` function that checks whether a given device is available. # In[ ]: class NotebookAlert(Exception): def __init__(self, message: str, alert_class: str): """ Show an alert box with the given message. :param message: The message to display. :param alert_class: The class for styling the message. Options: info, warning, success, danger. """ self.message = message self.alert_class = alert_class self.show_message() def show_message(self): display(HTML(f"""
{self.message}""")) class DeviceNotFoundAlert(NotebookAlert): def __init__(self, device: str): """ Show a warning message about an unavailable device. This class does not check whether or not the device is available, use the `check_device` function to check this. `check_device` also shows the warning if the device is not found. :param device: The unavailable device. :return: A formatted alert box with the message that `device` is not available, and a list of devices that are available. """ ie = Core() supported_devices = ie.available_devices self.message = f"Running this cell requires a {device} device, " "which is not available on this system. " self.alert_class = "warning" if len(supported_devices) == 1: self.message += f"The following device is available: {ie.available_devices[0]}" else: self.message += "The following devices are available: " f"{', '.join(ie.available_devices)}" super().__init__(self.message, self.alert_class) def check_device(device: str) -> bool: """ Check if the specified device is available on the system. :param device: Device to check. e.g. CPU, GPU :return: True if the device is available, False if not. If the device is not available, a DeviceNotFoundAlert will be shown. """ ie = Core() if device not in ie.available_devices: DeviceNotFoundAlert(device) return False else: return True def check_openvino_version(version: str) -> bool: """ Check if the specified OpenVINO version is installed. :param version: the OpenVINO version to check. Example: 2021.4 :return: True if the version is installed, False if not. If the version is not installed, an alert message will be shown. """ installed_version = get_version() if version not in installed_version: NotebookAlert( f"This notebook requires OpenVINO {version}. " f"The version on your system is: {installed_version}.
" "Please run pip install --upgrade -r requirements.txt " "in the openvino_env environment to install this version. " "See the " "OpenVINO Notebooks README for detailed instructions", alert_class="danger", ) return False else: return True packed_layername_tensor_dict_list = [{"name": "aten::mul/Multiply"}] class ReplaceTensor(MatcherPass): def __init__(self, packed_layername_tensor_dict_list): MatcherPass.__init__(self) self.model_changed = False param = WrapType("opset10.Multiply") def callback(matcher: Matcher) -> bool: root = matcher.get_match_root() if root is None: return False for y in packed_layername_tensor_dict_list: root_name = root.get_friendly_name() if root_name.find(y["name"]) != -1: max_fp16 = np.array([[[[-np.finfo(np.float16).max]]]]).astype(np.float32) new_tenser = ops.constant(max_fp16, Type.f32, name="Constant_4431") root.set_arguments([root.input_value(0).node, new_tenser]) packed_layername_tensor_dict_list.remove(y) return True self.register_matcher(Matcher(param, "ReplaceTensor"), callback) def optimize_bge_embedding(model_path, output_model_path): """ optimize_bge_embedding used to optimize BGE model for NPU device Arguments: model_path {str} -- original BGE IR model path output_model_path {str} -- Converted BGE IR model path """ core = Core() ov_model = core.read_model(model_path) manager = Manager() manager.register_pass(ReplaceTensor(packed_layername_tensor_dict_list)) manager.run_passes(ov_model) ov.save_model(ov_model, output_model_path, compress_to_fp16=False)