cyrusyc commited on
Commit
52e8e3f
1 Parent(s): e3d724f

Add CHGNet to citation

Browse files
Files changed (1) hide show
  1. README.md +11 -1
README.md CHANGED
@@ -9,7 +9,7 @@ tags:
9
  [MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
10
 
11
 
12
- [2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories convering 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920).
13
 
14
 
15
  # Citation
@@ -33,6 +33,7 @@ If you use the pretrained models in this repository, please cite all the followi
33
  year={2023}
34
  }
35
 
 
36
  @misc {yuan_chiang_2023,
37
  author = { {Yuan Chiang} },
38
  title = { mace-universal (Revision e5ebd9b) },
@@ -41,6 +42,15 @@ If you use the pretrained models in this repository, please cite all the followi
41
  doi = { 10.57967/hf/1202 },
42
  publisher = { Hugging Face }
43
  }
 
 
 
 
 
 
 
 
 
44
  ```
45
 
46
  # Training Details
 
9
  [MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
10
 
11
 
12
+ [2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories compiled by [CHGNet](https://arxiv.org/abs/2302.14231) authors to cover 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920).
13
 
14
 
15
  # Citation
 
33
  year={2023}
34
  }
35
 
36
+
37
  @misc {yuan_chiang_2023,
38
  author = { {Yuan Chiang} },
39
  title = { mace-universal (Revision e5ebd9b) },
 
42
  doi = { 10.57967/hf/1202 },
43
  publisher = { Hugging Face }
44
  }
45
+
46
+ @article{deng2023chgnet,
47
+ title={CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling},
48
+ author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J and Ceder, Gerbrand},
49
+ journal={Nature Machine Intelligence},
50
+ pages={1--11},
51
+ year={2023},
52
+ publisher={Nature Publishing Group UK London}
53
+ }
54
  ```
55
 
56
  # Training Details