Add CHGNet to citation
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ tags:
|
|
9 |
[MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
|
10 |
|
11 |
|
12 |
-
[2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories
|
13 |
|
14 |
|
15 |
# Citation
|
@@ -33,6 +33,7 @@ If you use the pretrained models in this repository, please cite all the followi
|
|
33 |
year={2023}
|
34 |
}
|
35 |
|
|
|
36 |
@misc {yuan_chiang_2023,
|
37 |
author = { {Yuan Chiang} },
|
38 |
title = { mace-universal (Revision e5ebd9b) },
|
@@ -41,6 +42,15 @@ If you use the pretrained models in this repository, please cite all the followi
|
|
41 |
doi = { 10.57967/hf/1202 },
|
42 |
publisher = { Hugging Face }
|
43 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
```
|
45 |
|
46 |
# Training Details
|
|
|
9 |
[MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
|
10 |
|
11 |
|
12 |
+
[2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories compiled by [CHGNet](https://arxiv.org/abs/2302.14231) authors to cover 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920).
|
13 |
|
14 |
|
15 |
# Citation
|
|
|
33 |
year={2023}
|
34 |
}
|
35 |
|
36 |
+
|
37 |
@misc {yuan_chiang_2023,
|
38 |
author = { {Yuan Chiang} },
|
39 |
title = { mace-universal (Revision e5ebd9b) },
|
|
|
42 |
doi = { 10.57967/hf/1202 },
|
43 |
publisher = { Hugging Face }
|
44 |
}
|
45 |
+
|
46 |
+
@article{deng2023chgnet,
|
47 |
+
title={CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling},
|
48 |
+
author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J and Ceder, Gerbrand},
|
49 |
+
journal={Nature Machine Intelligence},
|
50 |
+
pages={1--11},
|
51 |
+
year={2023},
|
52 |
+
publisher={Nature Publishing Group UK London}
|
53 |
+
}
|
54 |
```
|
55 |
|
56 |
# Training Details
|