Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, jsonify, request
|
2 |
+
from transformers import pipeline, AutoTokenizer
|
3 |
+
import joblib
|
4 |
+
import json
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
model = joblib.load("iris_svm.joblib")
|
8 |
+
|
9 |
+
# Load the configuration file
|
10 |
+
with open("config.json", "r") as f:
|
11 |
+
config = json.load(f)
|
12 |
+
|
13 |
+
# Get the input features and target variable
|
14 |
+
features = config["features"]
|
15 |
+
target = config["targets"][0]
|
16 |
+
target_mapping = config["target_mapping"]
|
17 |
+
|
18 |
+
# Initialize the tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
20 |
+
|
21 |
+
# Initialize the Flask app
|
22 |
+
app = Flask(__name__)
|
23 |
+
|
24 |
+
# Define the prediction route
|
25 |
+
@app.route("/predict", methods=["POST"])
|
26 |
+
def predict():
|
27 |
+
# Get the input data
|
28 |
+
input_data = request.json
|
29 |
+
|
30 |
+
# Construct the input text for the pipeline
|
31 |
+
input_text = f"SepalLengthCm: {input_data['SepalLengthCm']}, SepalWidthCm: {input_data['SepalWidthCm']}, PetalLengthCm: {input_data['PetalLengthCm']}, PetalWidthCm: {input_data['PetalWidthCm']}"
|
32 |
+
|
33 |
+
# Tokenize the input text
|
34 |
+
tokenized_input = tokenizer(input_text, return_tensors="pt")
|
35 |
+
|
36 |
+
# Make a prediction using the pipeline
|
37 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
|
38 |
+
predicted_class_id = classifier(tokenized_input)[0]['label']
|
39 |
+
|
40 |
+
# Convert the predicted class ID to a class name
|
41 |
+
predicted_class_name = list(target_mapping.keys())[list(target_mapping.values()).index(predicted_class_id)]
|
42 |
+
|
43 |
+
# Return the predicted class name as a JSON response
|
44 |
+
return jsonify({"predicted_class": predicted_class_name})
|
45 |
+
|
46 |
+
# Run the Flask app
|
47 |
+
if __name__ == "__main__":
|
48 |
+
app.run(debug=True)
|