Update README.md
Browse files再現確認済みの実行コード全体を最後尾に追記
README.md
CHANGED
@@ -239,4 +239,155 @@ with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
|
|
239 |
|
240 |
---
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
```
|
|
|
239 |
|
240 |
---
|
241 |
|
242 |
+
## 実行コード全体
|
243 |
+
```python
|
244 |
+
# 必要なライブラリのインストール
|
245 |
+
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
246 |
+
!pip install --upgrade torch
|
247 |
+
!pip install --upgrade xformers
|
248 |
+
!pip install ipywidgets --upgrade
|
249 |
+
|
250 |
+
# Flash Attention 2のインストール
|
251 |
+
import torch
|
252 |
+
if torch.cuda.get_device_capability()[0] >= 8:
|
253 |
+
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
|
254 |
+
|
255 |
+
# モデルとトークナイザーのロード
|
256 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
257 |
+
from unsloth import FastLanguageModel
|
258 |
+
|
259 |
+
# モデル設定
|
260 |
+
max_seq_length = 1024
|
261 |
+
dtype = None
|
262 |
+
load_in_4bit = True
|
263 |
+
model_id = "daichira/llm-jp-3-13b-finetune2"
|
264 |
+
new_model_id = "llm-jp-3-13b-itnew9"
|
265 |
+
|
266 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
267 |
+
model_name=model_id,
|
268 |
+
dtype=dtype,
|
269 |
+
load_in_4bit=load_in_4bit,
|
270 |
+
trust_remote_code=True,
|
271 |
+
)
|
272 |
+
|
273 |
+
# SFT用のモデル設定
|
274 |
+
model = FastLanguageModel.get_peft_model(
|
275 |
+
model,
|
276 |
+
r=32,
|
277 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
278 |
+
lora_alpha=32,
|
279 |
+
lora_dropout=0.05,
|
280 |
+
bias="none",
|
281 |
+
use_gradient_checkpointing="unsloth",
|
282 |
+
random_state=3407,
|
283 |
+
use_rslora=False,
|
284 |
+
loftq_config=None,
|
285 |
+
max_seq_length=max_seq_length,
|
286 |
+
)
|
287 |
+
|
288 |
+
# Hugging Faceのトークン設定
|
289 |
+
HF_TOKEN = "your_token"
|
290 |
+
|
291 |
+
# データセットの準備
|
292 |
+
!pip install datasets
|
293 |
+
import os
|
294 |
+
from datasets import load_dataset
|
295 |
+
|
296 |
+
dataset = load_dataset("DeL-TaiseiOzaki/Tengentoppa-sft-v1.0", split="train")
|
297 |
+
chunk_size = 30000
|
298 |
+
output_dir = "/content/tengentoppa_chunks"
|
299 |
+
os.makedirs(output_dir, exist_ok=True)
|
300 |
+
|
301 |
+
total_rows = len(dataset)
|
302 |
+
num_chunks = (total_rows + chunk_size - 1) // chunk_size
|
303 |
+
|
304 |
+
for i in range(num_chunks):
|
305 |
+
start_idx = i * chunk_size
|
306 |
+
end_idx = min(start_idx + chunk_size, total_rows)
|
307 |
+
chunk = dataset.select(range(start_idx, end_idx))
|
308 |
+
chunk_file = f"{output_dir}/tengentoppa_chunk_{i+1}.json"
|
309 |
+
chunk.to_json(chunk_file)
|
310 |
+
print(f"Saved chunk {i+1}/{num_chunks} to {chunk_file}")
|
311 |
+
|
312 |
+
print("All chunks have been saved!")
|
313 |
+
|
314 |
+
# JSON形式のデータセットをロード
|
315 |
+
json_path = "/content/tengentoppa_chunks/tengentoppa_chunk_3.json"
|
316 |
+
dataset = load_dataset("json", data_files=json_path)
|
317 |
+
print(dataset)
|
318 |
+
|
319 |
+
# プロンプトフォーマットの適用
|
320 |
+
prompt = """### 指示
|
321 |
+
{}
|
322 |
+
### 回答
|
323 |
+
{}"""
|
324 |
+
EOS_TOKEN = tokenizer.eos_token
|
325 |
+
|
326 |
+
def formatting_prompts_func(examples):
|
327 |
+
input_text = examples["instruction"]
|
328 |
+
output_text = examples["output"]
|
329 |
+
return {"formatted_text": prompt.format(input_text, output_text) + EOS_TOKEN}
|
330 |
+
|
331 |
+
dataset = dataset.map(formatting_prompts_func, num_proc=4)
|
332 |
+
|
333 |
+
# トレーニングの設定
|
334 |
+
from trl import SFTTrainer
|
335 |
+
from transformers import TrainingArguments
|
336 |
+
from unsloth import is_bfloat16_supported
|
337 |
+
|
338 |
+
trainer = SFTTrainer(
|
339 |
+
model=model,
|
340 |
+
tokenizer=tokenizer,
|
341 |
+
train_dataset=dataset["train"],
|
342 |
+
max_seq_length=max_seq_length,
|
343 |
+
dataset_text_field="formatted_text",
|
344 |
+
args=TrainingArguments(
|
345 |
+
per_device_train_batch_size=6,
|
346 |
+
gradient_accumulation_steps=4,
|
347 |
+
num_train_epochs=1,
|
348 |
+
logging_steps=50,
|
349 |
+
warmup_steps=500,
|
350 |
+
save_steps=500,
|
351 |
+
save_total_limit=2,
|
352 |
+
learning_rate=3e-4,
|
353 |
+
fp16=not is_bfloat16_supported(),
|
354 |
+
bf16=is_bfloat16_supported(),
|
355 |
+
group_by_length=True,
|
356 |
+
seed=3407,
|
357 |
+
output_dir="outputs",
|
358 |
+
),
|
359 |
+
)
|
360 |
+
|
361 |
+
# 学習実行
|
362 |
+
torch.cuda.empty_cache()
|
363 |
+
trainer.train()
|
364 |
+
|
365 |
+
# 推論の準備
|
366 |
+
import json
|
367 |
+
from tqdm import tqdm
|
368 |
+
|
369 |
+
with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
|
370 |
+
datasets = [json.loads(line) for line in f if line.strip().endswith("}")]
|
371 |
+
|
372 |
+
FastLanguageModel.for_inference(model)
|
373 |
+
|
374 |
+
results = []
|
375 |
+
for dt in tqdm(datasets):
|
376 |
+
input_text = dt["input"]
|
377 |
+
prompt = f"""### 指示\n{input_text}\n### 回答\n"""
|
378 |
+
|
379 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
380 |
+
outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
|
381 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
382 |
+
|
383 |
+
results.append({"task_id": dt["task_id"], "input": input_text, "output": prediction})
|
384 |
+
|
385 |
+
# 推論結果の保存
|
386 |
+
with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f:
|
387 |
+
for result in results:
|
388 |
+
json.dump(result, f, ensure_ascii=False)
|
389 |
+
f.write('\n')
|
390 |
+
```
|
391 |
+
|
392 |
+
|
393 |
```
|