--- license: mit library_name: open_clip pipeline_tag: zero-shot-image-classification --- CoreML versions of [laion/CLIP-ViT-H-14-laion2B-s32B-b79K](/laion/CLIP-ViT-H-14-laion2B-s32B-b79K). On my baseline M1 they run about 4x faster than the equivalent pytorch models run on the `mps` device (~6 image embeddings per second vs 1.5 images/sec for torch+mps), and according to `asitop` profiling, using about 3/4 of the energy to do so (6W average vs 8W for torch+mps). There are separate models for the image and text encoders. Sorry, I don't know how to put them both into one file. Conversion code is in [clip-to-coreml.ipynb](clip-to-coreml.ipynb). # Usage You'll need to use the original CLIP preprocessor (or write your own preprocessing). eg: ``` from transformers import CLIPProcessor import coremltools as ct from PIL import Image preprocessor = CLIPProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") model_coreml_image = ct.models.MLModel('CLIP-ViT-H-14-laion2B-s32B-b79K.image-encoder.mlprogram') model_coreml_text = ct.models.MLModel('CLIP-ViT-H-14-laion2B-s32B-b79K.text-encoder.mlprogram') image = Image.open("example.jpg") preprocessed_image = preprocessor(text=None, images=image, return_tensors="pt", padding=True) image_embedding = model_coreml.predict({'input_image_preprocessed': preprocessed_image.pixel_values})['output_embedding'] text = 'example text' preprocessed_text = preprocessor(text=text, images=None, return_tensors="pt", padding=True) text_embedding = model_coreml_text.predict({'input_text_token_ids': preprocessed_text.input_ids})['output_embedding']) ``` Please credit me if you use this. --- license: mit ---