--- base_model: facebook/wav2vec2-base datasets: - timit_asr library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: timit_asr type: timit_asr config: clean split: None args: clean metrics: - type: wer value: 0.3707532216938874 name: Wer --- # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4233 - Wer: 0.3708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.5113 | 3.4483 | 500 | 1.1493 | 0.8214 | | 0.554 | 6.8966 | 1000 | 0.4233 | 0.3708 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1