danelcsb commited on
Commit
8cf88ef
1 Parent(s): 1bd781b

Add config from convert_rt_detr_original_pytorch_checkpoint_to_pytorch.py

Browse files
Files changed (2) hide show
  1. README.md +199 -0
  2. config.json +269 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "silu",
4
+ "anchor_image_size": null,
5
+ "architectures": [
6
+ "RTDetrForObjectDetection"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auxiliary_loss": true,
10
+ "backbone": null,
11
+ "backbone_config": {
12
+ "depths": [
13
+ 2,
14
+ 2,
15
+ 2,
16
+ 2
17
+ ],
18
+ "hidden_sizes": [
19
+ 64,
20
+ 128,
21
+ 256,
22
+ 512
23
+ ],
24
+ "layer_type": "basic",
25
+ "model_type": "rt_detr_resnet",
26
+ "out_features": [
27
+ "stage2",
28
+ "stage3",
29
+ "stage4"
30
+ ],
31
+ "out_indices": [
32
+ 2,
33
+ 3,
34
+ 4
35
+ ]
36
+ },
37
+ "backbone_kwargs": null,
38
+ "batch_norm_eps": 1e-05,
39
+ "box_noise_scale": 1.0,
40
+ "d_model": 256,
41
+ "decoder_activation_function": "relu",
42
+ "decoder_attention_heads": 8,
43
+ "decoder_ffn_dim": 1024,
44
+ "decoder_in_channels": [
45
+ 256,
46
+ 256,
47
+ 256
48
+ ],
49
+ "decoder_layers": 3,
50
+ "decoder_n_points": 4,
51
+ "decoder_offset_scale": 0.5,
52
+ "decoder_version": "v2",
53
+ "disable_custom_kernels": true,
54
+ "dropout": 0.0,
55
+ "encode_proj_layers": [
56
+ 2
57
+ ],
58
+ "encoder_activation_function": "gelu",
59
+ "encoder_attention_heads": 8,
60
+ "encoder_ffn_dim": 1024,
61
+ "encoder_hidden_dim": 256,
62
+ "encoder_in_channels": [
63
+ 128,
64
+ 256,
65
+ 512
66
+ ],
67
+ "encoder_layers": 1,
68
+ "eos_coefficient": 0.0001,
69
+ "eval_size": null,
70
+ "feat_strides": [
71
+ 8,
72
+ 16,
73
+ 32
74
+ ],
75
+ "focal_loss_alpha": 0.75,
76
+ "focal_loss_gamma": 2.0,
77
+ "freeze_backbone_batch_norms": true,
78
+ "hidden_expansion": 0.5,
79
+ "id2label": {
80
+ "0": "person",
81
+ "1": "bicycle",
82
+ "2": "car",
83
+ "3": "motorbike",
84
+ "4": "aeroplane",
85
+ "5": "bus",
86
+ "6": "train",
87
+ "7": "truck",
88
+ "8": "boat",
89
+ "9": "traffic light",
90
+ "10": "fire hydrant",
91
+ "11": "stop sign",
92
+ "12": "parking meter",
93
+ "13": "bench",
94
+ "14": "bird",
95
+ "15": "cat",
96
+ "16": "dog",
97
+ "17": "horse",
98
+ "18": "sheep",
99
+ "19": "cow",
100
+ "20": "elephant",
101
+ "21": "bear",
102
+ "22": "zebra",
103
+ "23": "giraffe",
104
+ "24": "backpack",
105
+ "25": "umbrella",
106
+ "26": "handbag",
107
+ "27": "tie",
108
+ "28": "suitcase",
109
+ "29": "frisbee",
110
+ "30": "skis",
111
+ "31": "snowboard",
112
+ "32": "sports ball",
113
+ "33": "kite",
114
+ "34": "baseball bat",
115
+ "35": "baseball glove",
116
+ "36": "skateboard",
117
+ "37": "surfboard",
118
+ "38": "tennis racket",
119
+ "39": "bottle",
120
+ "40": "wine glass",
121
+ "41": "cup",
122
+ "42": "fork",
123
+ "43": "knife",
124
+ "44": "spoon",
125
+ "45": "bowl",
126
+ "46": "banana",
127
+ "47": "apple",
128
+ "48": "sandwich",
129
+ "49": "orange",
130
+ "50": "broccoli",
131
+ "51": "carrot",
132
+ "52": "hot dog",
133
+ "53": "pizza",
134
+ "54": "donut",
135
+ "55": "cake",
136
+ "56": "chair",
137
+ "57": "sofa",
138
+ "58": "pottedplant",
139
+ "59": "bed",
140
+ "60": "diningtable",
141
+ "61": "toilet",
142
+ "62": "tvmonitor",
143
+ "63": "laptop",
144
+ "64": "mouse",
145
+ "65": "remote",
146
+ "66": "keyboard",
147
+ "67": "cell phone",
148
+ "68": "microwave",
149
+ "69": "oven",
150
+ "70": "toaster",
151
+ "71": "sink",
152
+ "72": "refrigerator",
153
+ "73": "book",
154
+ "74": "clock",
155
+ "75": "vase",
156
+ "76": "scissors",
157
+ "77": "teddy bear",
158
+ "78": "hair drier",
159
+ "79": "toothbrush"
160
+ },
161
+ "initializer_bias_prior_prob": null,
162
+ "initializer_range": 0.01,
163
+ "is_encoder_decoder": true,
164
+ "label2id": {
165
+ "aeroplane": 4,
166
+ "apple": 47,
167
+ "backpack": 24,
168
+ "banana": 46,
169
+ "baseball bat": 34,
170
+ "baseball glove": 35,
171
+ "bear": 21,
172
+ "bed": 59,
173
+ "bench": 13,
174
+ "bicycle": 1,
175
+ "bird": 14,
176
+ "boat": 8,
177
+ "book": 73,
178
+ "bottle": 39,
179
+ "bowl": 45,
180
+ "broccoli": 50,
181
+ "bus": 5,
182
+ "cake": 55,
183
+ "car": 2,
184
+ "carrot": 51,
185
+ "cat": 15,
186
+ "cell phone": 67,
187
+ "chair": 56,
188
+ "clock": 74,
189
+ "cow": 19,
190
+ "cup": 41,
191
+ "diningtable": 60,
192
+ "dog": 16,
193
+ "donut": 54,
194
+ "elephant": 20,
195
+ "fire hydrant": 10,
196
+ "fork": 42,
197
+ "frisbee": 29,
198
+ "giraffe": 23,
199
+ "hair drier": 78,
200
+ "handbag": 26,
201
+ "horse": 17,
202
+ "hot dog": 52,
203
+ "keyboard": 66,
204
+ "kite": 33,
205
+ "knife": 43,
206
+ "laptop": 63,
207
+ "microwave": 68,
208
+ "motorbike": 3,
209
+ "mouse": 64,
210
+ "orange": 49,
211
+ "oven": 69,
212
+ "parking meter": 12,
213
+ "person": 0,
214
+ "pizza": 53,
215
+ "pottedplant": 58,
216
+ "refrigerator": 72,
217
+ "remote": 65,
218
+ "sandwich": 48,
219
+ "scissors": 76,
220
+ "sheep": 18,
221
+ "sink": 71,
222
+ "skateboard": 36,
223
+ "skis": 30,
224
+ "snowboard": 31,
225
+ "sofa": 57,
226
+ "spoon": 44,
227
+ "sports ball": 32,
228
+ "stop sign": 11,
229
+ "suitcase": 28,
230
+ "surfboard": 37,
231
+ "teddy bear": 77,
232
+ "tennis racket": 38,
233
+ "tie": 27,
234
+ "toaster": 70,
235
+ "toilet": 61,
236
+ "toothbrush": 79,
237
+ "traffic light": 9,
238
+ "train": 6,
239
+ "truck": 7,
240
+ "tvmonitor": 62,
241
+ "umbrella": 25,
242
+ "vase": 75,
243
+ "wine glass": 40,
244
+ "zebra": 22
245
+ },
246
+ "label_noise_ratio": 0.5,
247
+ "layer_norm_eps": 1e-05,
248
+ "learn_initial_query": false,
249
+ "matcher_alpha": 0.25,
250
+ "matcher_bbox_cost": 5.0,
251
+ "matcher_class_cost": 2.0,
252
+ "matcher_gamma": 2.0,
253
+ "matcher_giou_cost": 2.0,
254
+ "model_type": "rt_detr",
255
+ "normalize_before": false,
256
+ "num_denoising": 100,
257
+ "num_feature_levels": 3,
258
+ "num_queries": 300,
259
+ "positional_encoding_temperature": 10000,
260
+ "torch_dtype": "float32",
261
+ "transformers_version": "4.45.0.dev0",
262
+ "use_focal_loss": true,
263
+ "use_pretrained_backbone": false,
264
+ "use_timm_backbone": false,
265
+ "weight_loss_bbox": 5.0,
266
+ "weight_loss_giou": 2.0,
267
+ "weight_loss_vfl": 1.0,
268
+ "with_box_refine": true
269
+ }